Tính
a) A=3/4 . 8/9 .15/16 . ... . 2499/2500
b) B= \(\dfrac{2^2}{1.3}\) . \(\dfrac{3^2}{2.4}\) . \(\dfrac{4^2}{3.5}\). ... . \(\dfrac{50^2}{49.51}\)
tim x biet
a)\(\frac{3}{4}.\frac{8}{9}.\frac{15}{16}...\frac{2499}{2500}\)
b) \(\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}...\frac{50^2}{49.51}\)
Các bạn giúp với :<
Bài 1:
a, CMR: A = \(\dfrac{3}{1^2.2^2}+\dfrac{5}{2^2.3^2}+\dfrac{7}{3^2.4^2}+...+\dfrac{21}{10^2.11^2}< 1\)
b, Cho B = \(\dfrac{3}{4}+\dfrac{8}{9}+\dfrac{15}{16}+\dfrac{24}{25}+...+\dfrac{2499}{2500}.\) CMR: B không phải là số nguyên.
c, So sánh: C = \(\dfrac{2}{2^1}+\dfrac{3}{2^2}+\dfrac{4}{2^3}+...+\dfrac{2021}{2^{2020}}\) với 3.
a)P=(1-1/2).(1-1/3).(1-1/4).....(1-1/999).(1-1/1000)
b)A=3/4. 8/9.15/16.....2499/2500
c)B=(22/1.3) . (32/2.4) . (42/3.5)...(502/49.51)
tính nhanh
A=\(\dfrac{3}{2^2}.\dfrac{8}{3^2}.\dfrac{15}{4^2}...\dfrac{899}{30^2}\)
B=\(\dfrac{8}{9}.\dfrac{15}{16}.\dfrac{24}{25}...\dfrac{2499}{2500}\)
\(A=\dfrac{3}{2^2}.\dfrac{8}{3^2}.\dfrac{15}{4^2}.....\dfrac{899}{30^2}\)
\(A=\dfrac{1.3}{2.2}.\dfrac{2.4}{3.3}.\dfrac{3.5}{4.4}.....\dfrac{29.31}{30.30}\)
\(A=\dfrac{1.3.2.4.3.5.....29.31}{2.2.3.3.4.4.....30.30}\)
\(A=\dfrac{1.2.3.....29}{2.3.4....30}.\dfrac{3.4.5.....31}{2.3.4.....30}\)
\(A=\dfrac{1}{30}.\dfrac{31}{2}=\dfrac{31}{60}\)
\(B=\dfrac{8}{9}.\dfrac{15}{16}.\dfrac{24}{25}.....\dfrac{2499}{2500}\)
\(B=\dfrac{2.4}{3.3}.\dfrac{3.5}{4.4}.\dfrac{4.6}{5.5}.....\dfrac{49.51}{50.50}\)
\(B=\dfrac{2.4.3.5.4.6.....49.51}{3.3.4.4.5.5....50.50}\)
\(B=\dfrac{2.3.4......49}{3.4.5....50}.\dfrac{4.5.6.....51}{3.4.5....50}\)
\(B=\dfrac{2}{50}.\dfrac{51}{3}=\dfrac{17}{25}\)
Giải:
\(A=\dfrac{3}{2^2}.\dfrac{8}{3^2}.\dfrac{15}{4^2}.....\dfrac{899}{30^2}.\)
\(A=\dfrac{1.3}{2^2}.\dfrac{2.4}{3^2}.\dfrac{3.5}{4^2}.....\dfrac{29.31}{30^2}.\)
\(A=\dfrac{1.2.3.....29}{2.3.4.....30}.\dfrac{2.3.4.....31}{2.3.4.....30}.\)
\(A=\dfrac{1}{30}.31=\dfrac{30}{31}.\)
Vậy \(A=\dfrac{30}{31}.\)
\(A=\dfrac{3}{2^2}.\dfrac{8}{3^2}.\dfrac{15}{4^2}............................\dfrac{899}{30^2}\)
\(\Leftrightarrow A=\dfrac{1.3}{2^2}.\dfrac{2.4}{3^2}.\dfrac{3.5}{4^2}..............................\dfrac{29.31}{30^2}\)
\(\Leftrightarrow A=\dfrac{1.3.2.4.3.5..........29.31}{2.2.3.3.4.4.........30.30}\)
\(\Leftrightarrow A=\dfrac{\left(2.3.........29.30\right).\left(3.4.5......29.31\right)}{\left(2.3....29.30\right).\left(2.3.4.......29.30\right)}\)
\(\Leftrightarrow A=\dfrac{31}{2.30}=\dfrac{31}{60}\)
\(B=\dfrac{8}{9}.\dfrac{15}{16}.\dfrac{24}{25}....................................\dfrac{2499}{2500}\)
\(\Leftrightarrow B=\dfrac{2.4}{3.3}.\dfrac{3.5}{4.4}.\dfrac{4.6}{5.5}.............................\dfrac{49.51}{50.50}\)
\(\Leftrightarrow B=\dfrac{\left(2.3.4.....49\right).\left(4.5.6......51\right)}{\left(3.4.5....50\right)\left(3.4.5.....50\right)}=\dfrac{2.51}{50.3}=\dfrac{17}{25}\)
CMR:
a) \(\dfrac{1}{2^2}+\dfrac{1}{4^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}< \dfrac{1}{2}\)
b) \(\dfrac{3}{4}+\dfrac{8}{9}+\dfrac{15}{16}+...+\dfrac{2499}{2500}>48\)
a)\(A=\dfrac{1}{2^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}< \dfrac{1}{2^2-1}+\dfrac{1}{4^2-1}+...+\dfrac{1}{100^2-1}\)
\(A< \dfrac{1}{1\cdot3}+\dfrac{1}{3\cdot5}+...+\dfrac{1}{99\cdot101}\)
\(A< \dfrac{1}{2}\cdot\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\)
\(A< \dfrac{1}{2}\cdot\left(1-\dfrac{1}{101}\right)=\dfrac{1}{2}\cdot\dfrac{100}{101}=\dfrac{50}{101}< \dfrac{50}{100}=\dfrac{1}{2}\)
Vậy \(A< \dfrac{1}{2}\)
b)B=\(\dfrac{3}{4}+\dfrac{8}{9}+...+\dfrac{2499}{2500}\)
49-B=\(\dfrac{1}{4}+\dfrac{1}{9}+...+\dfrac{1}{2500}=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{50^2}\)
\(49-B< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{49.50}=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}\)
\(49-B< 1-\dfrac{1}{50}< 1\Leftrightarrow49< 1+B\Leftrightarrow B>48\)(ĐPCM)
b) Đặt :
\(A=\dfrac{3}{4}+\dfrac{8}{9}+\dfrac{15}{16}+............+\dfrac{2499}{2500}\)
\(\Rightarrow A=\dfrac{4}{4}-\dfrac{1}{4}+\dfrac{9}{9}-\dfrac{1}{9}+.........+\dfrac{2500}{2500}-\dfrac{1}{2500}\)
\(A=1-\dfrac{1}{2^2}+1-\dfrac{1}{3^2}+...........+1-\dfrac{1}{50^2}\)
\(A=\left(1+1+....+1\right)-\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+......+\dfrac{1}{50^2}\right)\)(\(49\) chữ số \(1\))
\(A=49-\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+........+\dfrac{1}{50^2}\right)\)
Lại có :
\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+.....+\dfrac{1}{50^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+.....+\dfrac{1}{49.50}\)
Mà :
\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+.....+\dfrac{1}{49.50}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+.....+\dfrac{1}{49}-\dfrac{1}{50}\)
\(=1-\dfrac{1}{50}< 1\)
\(\Rightarrow-\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+......+\dfrac{1}{50^2}\right)>-1\)
\(\Rightarrow49-\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+............+\dfrac{1}{50^2}\right)>49-1\)\(=48\)
\(\Rightarrow A>48\) \(\rightarrowđpcm\)
\(\dfrac{2^2}{1.3}.\dfrac{3^3}{2.4}.\dfrac{4^4}{3.5}...\dfrac{50^2}{49.54}\)
với lại lũy thừa tất cả phải là mũ 2
\(\dfrac{2^2}{1.3}.\dfrac{3^2}{2.4}.\dfrac{4^2}{3.5}.....\dfrac{50^2}{49.51}\\ =\dfrac{\left(2.3.4.....50\right).\left(2.3.4....50\right)}{\left(1.2.3....49\right).\left(3.4.5.....51\right)}\\ =\dfrac{50.2}{51.1}\\ =1\dfrac{49}{51}\\ =\dfrac{100}{51}\)
Chứng minh rằng A=\(\dfrac{3}{4}+\dfrac{8}{9}+\dfrac{15}{16}+...+\dfrac{2499}{2500}>48\)
\(\dfrac{n^2-1}{n^2}=1-\dfrac{1}{n^2}>1-\dfrac{1}{\left(n-1\right)n}\)
Từ đó ta có:
\(A=\dfrac{2^2-1}{2^2}+\dfrac{3^2-1}{3^2}+...+\dfrac{50^2-1}{50^2}>1-\dfrac{1}{1.2}+1-\dfrac{1}{2.3}+...+1-\dfrac{1}{49.50}\)
\(\Rightarrow A>49-\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{49.50}\right)\)
\(\Rightarrow A>49-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}\right)\)
\(\Rightarrow A>49-\left(1-\dfrac{1}{50}\right)=48+\dfrac{1}{50}>48\)
\(A=\dfrac{3}{4}+\dfrac{8}{9}+\dfrac{15}{16}+...+\dfrac{2499}{2500}\\ A=\left(1+1+1+...+1\right)-\left(\dfrac{1}{4}+\dfrac{1}{9}+\dfrac{1}{16}+...+\dfrac{1}{2500}\right)\\ A=49-\left(\dfrac{1}{4}+\dfrac{1}{9}+\dfrac{1}{16}+...+\dfrac{1}{2500}\right)\)
Có \(\dfrac{1}{4}=\dfrac{1}{2.2}< \dfrac{1}{1.2}\\ \dfrac{1}{9}=\dfrac{1}{3.3}< \dfrac{1}{2.3}\\ \dfrac{1}{16}=\dfrac{1}{4.4}< \dfrac{1}{3.4}\\ ...\\ \dfrac{1}{2500}=\dfrac{1}{50.50}< \dfrac{1}{49.50}\)
\(\Rightarrow\dfrac{1}{4}+\dfrac{1}{9}+\dfrac{1}{16}+...+\dfrac{1}{2500}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}\\ \Rightarrow\dfrac{1}{4}+\dfrac{1}{9}+\dfrac{1}{16}+...+\dfrac{1}{2500}< 1-\dfrac{1}{50}< 1\\ \Rightarrow\dfrac{1}{4}+\dfrac{1}{9}+\dfrac{1}{16}+...+\dfrac{1}{2500}< 1\)
\(\Rightarrow A=49-\left(\dfrac{1}{4}+\dfrac{1}{9}+\dfrac{1}{16}+...+\dfrac{1}{2500}\right)>49-1\\ \Rightarrow A>48\)
Chứng tỏ :
a, A = \(\dfrac{1}{2.4}+\dfrac{1}{4.6}+...+\dfrac{1}{2022.2024}\) < \(\dfrac{1}{4}\)
b, B =\(\dfrac{1}{1.3}+\dfrac{1}{3.5}+...+\dfrac{1}{2013.2015}< \dfrac{1}{2}\)
c, C =\(\dfrac{1}{3^2}+\dfrac{1}{5^2}+\dfrac{1}{7^2}+...+\dfrac{1}{2013^2}< \dfrac{1}{4}\)
d, D =\(\dfrac{1}{2^2}+\dfrac{1}{4^2}+\dfrac{1}{6^2}+...+\dfrac{1}{2014^2}< \dfrac{1}{2}\)
a: \(A=\dfrac{1}{2}\left(\dfrac{2}{2\cdot4}+\dfrac{2}{4\cdot6}+...+\dfrac{2}{2022\cdot2024}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+...+\dfrac{1}{2022}-\dfrac{1}{2024}\right)\)
\(=\dfrac{1}{2}\cdot\dfrac{1011}{2024}=\dfrac{1011}{4848}< \dfrac{1}{4}\)
b: \(B=\dfrac{1}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{2013\cdot2015}\right)\)
\(=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2013}-\dfrac{1}{2015}\right)\)
\(=\dfrac{1}{2}\cdot\dfrac{2014}{2015}=\dfrac{1007}{2015}< \dfrac{1}{2}\)
Tính hợp lí:
A=\(\dfrac{3}{1.3}+\dfrac{3}{3.5}+\dfrac{3}{5.7}+...+\dfrac{3}{49.51}\)
B=\(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^8}\)
Giúp mik nha mik đang cần rất là gấp nha !!!!!!!!!!
A bn lướt xuống dưới mà xem cách làm
nhưng của bn là cho 3 ra ngoài nha
Giải:
A=3/1.3+3/3.5+3/5.7+...+3/49.51
A=3/2.(2/1.3+2/3.5+2/5.7+...+2/49.51)
A=3/2.(1/1-1/3+1/3-1/5+1/5-1/7+...+1/49-1/51)
A=3/2.(1/1-1/51)
A=3/2.50/51
A=25/17
B=1/3+1/32+1/33+...+1/38
3B=1+1/3+1/32+...+1/37
3B-B=(1+1/3+1/32+...+1/37)-(1/3+1/32+1/33+...+1/38)
2B=1-1/38
B=1-1/38 /2
Chúc bạn học tốt!