Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
subjects
Xem chi tiết
Nguyễn Bá Minh Nhật
26 tháng 12 2022 lúc 14:50

đợi tý

when the imposter is sus
28 tháng 12 2022 lúc 21:07

a) Để \(A=\dfrac{2022}{\left|x\right|+2023}\) đạt Max thì |x| + 2023 phải đạt Min

Ta có \(\left|x\right|\ge0\forall x\Rightarrow\left|x\right|+2023\ge2023\forall x\)

\(\Rightarrow\dfrac{2022}{\left|x\right|+2023}\le\dfrac{2022}{2023}\forall x\)

Dấu "=" xảy ra khi \(\left|x\right|=0\Rightarrow x=0\)

Vậy Max \(A=\dfrac{2022}{\left|x\right|+2023}=\dfrac{2022}{2023}\) đạt được khi x = 0

b) Để \(B=\left(\sqrt{x}+1\right)^{99}+2022\) đạt Min với \(x\ge0\) thì \(\sqrt{x}+1\) phải đạt Min

Ta có \(\sqrt{x}\ge0\forall x\ge0\Rightarrow\sqrt{x}+1\ge1\forall x\ge0\)

\(\Rightarrow\left(\sqrt{x}+1\right)^{99}+2022\ge1+2022\ge2023\forall x\ge0\)

Dấu "=" xảy ra khi \(\sqrt{x}=0\Rightarrow x=0\)

Vậy Max \(B=\left(\sqrt{x}+1\right)^{99}+2022=2023\) đạt được khi x = 0

Câu c) và d) thì tự làm, ko có rảnh =))))

Dương đình minh
18 tháng 8 2023 lúc 16:46

Đã trả lời rồi còn độ tí đồ ngull

Vũ Ngọc Thảo Nguyên
Xem chi tiết
Phạm Quốc Anh
Xem chi tiết
Vũ Quý Đạt
8 tháng 1 2017 lúc 8:07

theo bất đẳng thức : \(\left|a+b\right|\le\left|a\right|+\left|b\right|\)

\(A=\left|x\right|+\left|8-x\right|\ge\left|x+8-x\right|=8\)

suy ra GTNN A=8

Nguyễn Thị Thu Phương
8 tháng 1 2017 lúc 8:04

giá trị giỏ nhất của A là 8

Toàn Quyền Nguyễn
8 tháng 1 2017 lúc 8:07

GTNN=8

Qasalt
Xem chi tiết
Trần Hoàng Uyên Nhi
Xem chi tiết
Trịnh Thành Công
30 tháng 12 2016 lúc 22:15

\(A=\left(x+8\right)^4+\left(x+6\right)^4\)

       Vì \(\left(x+8\right)^4\ge0;\left(x+6\right)^4\ge0\)

                         Suy ra:\(\left(x+8\right)^4+\left(x+6\right)^4\ge0\)

Dấu = xảy ra khi \(\orbr{\begin{cases}x+8=0\\x+6=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=-8\\x=-6\end{cases}}\)

       Vậy Max A=0 khi x=-8;-6

ngonhuminh
30 tháng 12 2016 lúc 22:28

GTNN của A=2

khi =!y+2!=!y!

y=-1

c

có  thiện chí hỏi xẽ có câu trả lời chi tiết

Huy Nguyễn Đức
31 tháng 12 2016 lúc 7:19

ta có A luôn lớn hơn hoặc bằng 2(x+8)^2(x+6)^2

A>hoặc bằng 2((x+8)(x+6))^2

xét 2((x+8)(x+6))^2

=2(x^2+14+48)^2

=2((x+7)^2-1)^2

(x+7)^2 luôn lơn hơn hoặc bằng 0 

suy ra GTNN của 2(x^2+14+48) là 2 khi x=-7

suy ra GTNN của A=2 khi x=-7

Vũ Ngọc Diệp
Xem chi tiết
Akai Haruma
27 tháng 12 2023 lúc 23:48

Lời giải:
Áp dụng BĐT $|a|+|b|\geq |a+b|$ ta có:

$|x-2019|+|x-2021|=|x-2019|+|2021-x|\geq |x-2019+2021-x|=2$

$|x-2020|\geq 0$ với mọi $x$

$\Rightarrow A=|x-2019|+|x-2020|+|x-2021|\geq 2+0=2$

Vậy $A_{\min}=2$
Giá trị này đạt được khi: $(x-2019)(2021-x)\geq 0$ và $x-2020=0$

Tức là $x=2020$

Nguyễn ngọc Khế Xanh
Xem chi tiết
Yeutoanhoc
16 tháng 7 2021 lúc 8:02

Áp dụng tính chất :`|P|>=P,|P|>=-P`

`=>{(|x-2019|>=x-2019),(|x-2021|>=2021-x):}`

`=>A>=x-2019+2021-x=2`

Dấu "=" xảy ra khi `{(x-2019>=0),(2021-x<=0):}`

`<=>{(x>=2019),(x<=2021):}`

`<=>2019<=x<=2021`

NGUYỄN MINH HUY
Xem chi tiết
Nguyễn tuấn nghĩa
Xem chi tiết
Nguyễn Tất Đạt
13 tháng 6 2018 lúc 10:03

\(P=\left(x+8\right)^2+\left(x+4\right)^2\)

\(P=x^2+16x+64+x^2+8x+16\)

\(P=2x^2+24x+80=2\left(x^2+12x+40\right)\)

Ta có: \(x^2+12x+40=\left(x^2+2.x.6+36\right)+4=\left(x+6\right)^2+4\)

Thấy \(\left(x+6\right)^2\ge0\forall x\Rightarrow x^2+12x+40\ge4\)

\(\Rightarrow P=2\left(x^2+12x+40\right)\ge2.4=8\)

Vậy Min P=8, dấu = xảy ra khi và chỉ khi x = -6.

25.Lê Ngọc Phan-8A
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 5 2022 lúc 12:26

1:

ĐKXĐ: \(x\notin\left\{3;-2;1\right\}\)

 \(A=\left(\dfrac{x\left(x+2\right)-x+1}{\left(x-3\right)\left(x+2\right)}\right):\left(\dfrac{x\left(x-3\right)+5x+1}{\left(x+2\right)\left(x-3\right)}\right)\)

\(=\dfrac{x^2+2x-x+1}{\left(x-3\right)\left(x+2\right)}\cdot\dfrac{\left(x+2\right)\left(x-3\right)}{x^2-3x+5x+1}\)

\(=\dfrac{x^2+x+1}{\left(x-1\right)^2}\)