Cho biết a < b. Chứng minh rằng :
a. 2a + 5 < 2b + 5
b. 2 - 10a > 2 - 10b
c. 7a - 3 < 7b - 1
d. \(3-\dfrac{a}{3}>1-\dfrac{b}{3}\)
Cho a,b,c là các số thực dương. Chứng minh rằng:
\(\dfrac{3a^3+7b^3}{2a+3b}+\dfrac{3b^3+7c^3}{2b+3c}+\dfrac{3c^3+7a^3}{2c+3a}\ge3\left(a^2+b^2+c^2\right)-\left(ab+bc+ca\right)\)
\(BDT\Leftrightarrow2a^4b+2b^4c+2c^4a+3ab^4+3bc^4+3ca^4\ge5a^2b^2c+5a^2bc^2+5ab^2c^2\)
Ta chứng minh được \(ab^4+bc^4+ca^4\ge a^2b^2c+a^2bc^2+ab^2c^2\)
\(\Leftrightarrow\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\ge ab+bc+ca\)
\(VT=\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}=\dfrac{a^4}{ab}+\dfrac{b^4}{bc}+\dfrac{c^4}{ac}\)
\(\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ca}\ge\dfrac{\left(ab+bc+ca\right)^2}{ab+bc+ca}=VP\)
Vậy ta cần chứng minh \(2a^4b+2b^4c+2c^4a+2ab^4+2bc^4+2ca^4\ge4a^2b^2c+4a^2bc^2+4ab^2c^2\)
\(\Leftrightarrow\sum_{cyc}\left(2c^3+bc^2-b^2c+ac^2-a^2c+3ab^2+3a^2b\right)\left(a-b\right)^2\ge0\)
Dấu "=" xảy ra khi \(a=b=c\)
Em có cách này tuy nhiên không chắc,do em mới học sos thôi,mong mọi người giúp đỡ ạ!
BĐT \(\Leftrightarrow\Sigma_{cyc}\left(\frac{7b^3+3ab^2-7a^2b-3a^3}{2a+3b}\right)\ge0\)\(\Leftrightarrow\Sigma_{cyc}\left(\frac{7b\left(b^2-a^2\right)+3a\left(b^2-a^2\right)}{2a+3b}\right)\ge0\)
\(\Leftrightarrow\Sigma_{cyc}\left(\frac{\left(b^2-a^2\right)\left(7b+3a\right)}{2a+3b}-2\left(b^2-a^2\right)\right)\ge0\) (ta không cần cộng thêm \(\Sigma_{cyc}2\left(b^2-a^2\right)\) vì \(\Sigma_{cyc}2\left(b^2-a^2\right)=\Sigma_{cyc}2\left(b^2-a^2+c^2-b^2+a^2-c^2\right)=0\))
\(\Leftrightarrow\Sigma_{cyc}\left(b^2-a^2\right)\left(\frac{7b+3a-4a-6b}{2a+3b}\right)\ge0\)\(\Leftrightarrow\Sigma_{cyc}\frac{\left(a+b\right)\left(a-b\right)^2}{2a+3b}\ge0\)
P/s: Hình như có gì đó sai sai ạ,mong mọi người check hộ em!Em cảm ơn nhiều ạ!
Cho \(\dfrac{a}{b}=\dfrac{c}{d}\). Chứng minh:
1) \(\dfrac{2a+3c}{2b+3d}=\dfrac{2a-3c}{2b-3d}\)
2) \(\dfrac{4a-3b}{4c-3d}=\dfrac{4a+3b}{4c+3d}\)
3) \(\dfrac{3a+5b}{3a-5b}=\dfrac{3c+5d}{3c-5d}\)
4) \(\dfrac{3a-7b}{b}=\dfrac{3c-7d}{d}\)
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)
=>\(a=bk;c=dk\)
1: \(\dfrac{2a+3c}{2b+3d}=\dfrac{2\cdot bk+3\cdot dk}{2b+3d}=\dfrac{k\left(2b+3d\right)}{2b+3d}=k\)
\(\dfrac{2a-3c}{2b-3d}=\dfrac{2bk-3dk}{2b-3d}=\dfrac{k\left(2b-3d\right)}{2b-3d}=k\)
Do đó: \(\dfrac{2a+3c}{2b+3d}=\dfrac{2a-3c}{2b-3d}\)
2: \(\dfrac{4a-3b}{4c-3d}=\dfrac{4\cdot bk-3b}{4\cdot dk-3d}=\dfrac{b\left(4k-3\right)}{d\left(4k-3\right)}=\dfrac{b}{d}\)
\(\dfrac{4a+3b}{4c+3d}=\dfrac{4bk+3b}{4dk+3d}=\dfrac{b\left(4k+3\right)}{d\left(4k+3\right)}=\dfrac{b}{d}\)
Do đó: \(\dfrac{4a-3b}{4c-3d}=\dfrac{4a+3b}{4c+3d}\)
3: \(\dfrac{3a+5b}{3a-5b}=\dfrac{3bk+5b}{3bk-5b}=\dfrac{b\left(3k+5\right)}{b\left(3k-5\right)}=\dfrac{3k+5}{3k-5}\)
\(\dfrac{3c+5d}{3c-5d}=\dfrac{3dk+5d}{3dk-5d}=\dfrac{d\left(3k+5\right)}{d\left(3k-5\right)}=\dfrac{3k+5}{3k-5}\)
Do đó: \(\dfrac{3a+5b}{3a-5b}=\dfrac{3c+5d}{3c-5d}\)
4: \(\dfrac{3a-7b}{b}=\dfrac{3bk-7b}{b}=\dfrac{b\left(3k-7\right)}{b}=3k-7\)
\(\dfrac{3c-7d}{d}=\dfrac{3dk-7d}{d}=\dfrac{d\left(3k-7\right)}{d}=3k-7\)
Do đó: \(\dfrac{3a-7b}{b}=\dfrac{3c-7d}{d}\)
Bài 2: Chứng minh
a, (a+b+c)(a\(^2\)+b\(^2\)+c\(^2\)-ab-ac-bc)= a\(^3\)+b\(^{^{ }3}\)+c\(^3\)-3abc
b, ( 3a+2b-1)(a+5)-2b(a-2)=(3a+5)(a+3)+2(7b-10)
c, 2(a+b+c)(\(\dfrac{b}{2}\)+\(\dfrac{c}{2}\)-\(\dfrac{a}{2}\))=2bc+c\(^2\)+b\(^2\)-a\(^2\)
a) \(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2\right)-\left(a+b+c\right)\left(ab+bc+ac\right)\)
\(=a^3+ab^2+ac^2+a^2b+b^3+c^2b+a^2c+b^2c+c^3-a^2b-abc-a^2c-ab^2-b^2c-abc-abc-bc^2-ac^2\)
\(=a^3+b^3+c^3-3abc\left(đpcm\right)\)
b) Bạn chỉ cần nhân bung cả 2 vế ra là được á .
c) \(2\left(a+b+c\right)\left(\dfrac{b}{2}+\dfrac{c}{2}-\dfrac{a}{2}\right)\)
\(=2\left(a+b+c\right)\left(\dfrac{b+c-a}{2}\right)\)
\(=\left(a+b+c\right)\left(b+c-a\right)\)
\(=ab+ac-a^2+b^2+bc-ab+bc+c^2-ac\)
\(=2bc+b^2+c^2-a^2\left(đpcm\right)\)
BT1:
a) 2x-1=0 ; b) 3x-2=5+x ; c) 2(x-3)-4=3(1+x)-5x ; d) \(\dfrac{x+1}{2}\)- \(\dfrac{2x}{3}\)=1 ; e) x(x-2)+3(x-2)=0 ; f) \(\dfrac{x+1}{x-1}\)+ \(\dfrac{3}{x}\)= \(\dfrac{x^2+2}{x^2-x}\)
BT2:
a) Cho a>b, chứng minh rằng 2a+1>2b-3
b) Tìm x để giá trị của biểu thức 3x-1 ≤ giá trị biểu thức x+2
c) Giải các bất phương trình sau và biểu diễn tập nghiệm trên trục số (mng giúp mình giải phương trình thôi nha)
2x+3>0 ; 3x+1<x-4 ; 2(x+1)+3≥ 3(5-x) ; \(\dfrac{x}{3}\)-\(\dfrac{x+1}{5}\)>1
BT3: Giải bài toán bằng cách lập phương trình
1 ô tô đi từ A đến B với vận tốc 50km/h. Đến B, ô tô nghỉ lại 1h, sau đó quay trở về A với vận tốc 60km/h. Tổng thời gian đi và về(gồm thời gian nghỉ lại) là 6h30p. Tính quãng đường AB?
Mng giúp mình với mai mình kiểm tra rồi ạ, mình cảm ơn
Bài 2 :
a, Cho các số a,b,c,d là các số nguyên dương đôi 1 khác nhau và thỏa mãn :
\(\dfrac{2a+b}{a+b}+\dfrac{2b+c}{b+c}+\dfrac{2c+d}{c+d}+\dfrac{2d+a}{d+a}=6\) . Chứng minh \(A=abcd\) là số chính phương
b, Tìm nguyên a để \(a^3-2a^2+7a-7\) chia hết cho \(a^2+3\)
Cho 3 số thực dương a, b, c thỏa mãn: abc=1. Chứng minh rằng:
\(\dfrac{a^3}{a^2+2b^2}+\dfrac{b^3}{b^2+2c^2}+\dfrac{c^3}{c^2+2a^2}\ge1\)
Ta có: \(\dfrac{a^3}{a^2+2b^2}=a-\dfrac{2ab^2}{a^2+2b^2}\ge a-\dfrac{2ab^2}{3\sqrt[3]{a^2b^4}}=a-\dfrac{2}{3}\sqrt[3]{ab^2}\ge a-\dfrac{2}{9}\left(a+b+b\right)=a-\dfrac{2}{9}\left(a+2b\right)\) Chứng minh tương tự ta được:
\(\dfrac{b^3}{b^2+2c^2}\ge b-\dfrac{2}{9}\left(b+2c\right);\dfrac{c^3}{c^2+2a^2}\ge c-\dfrac{2}{9}\left(c+2a\right)\)
\(\Rightarrow\dfrac{a^3}{a^2+2b^2}+\dfrac{b^3}{b^2+2c^2}+\dfrac{c^3}{c^2+2a^2}\ge a+b+c-\dfrac{2}{9}\left(a+2b+b+2c+c+2a\right)=a+b+c-\dfrac{2}{9}\left(3a+3b+3c\right)=\dfrac{1}{3}\left(a+b+c\right)\ge\dfrac{1}{3}\cdot3\sqrt[3]{abc}=1\)Dấu = xảy ra \(\Leftrightarrow a=b=c=1\)
Bài 1: Chứng minh:
a, ( a+b+c)(a\(^2\)+b\(^2\)+c\(^2\)-ab-ac-bc)=a\(^3\)+b\(^3\)+c\(^3\)-3abc
b, ( 3a+2b-1)(a+5)-2b(a-2)=(3a+5)(a+3)+2(7b-10)
c, 2(a+b+c)(\(\dfrac{b}{2}\)+\(\dfrac{c}{2}\)-\(\dfrac{a}{2}\))=2bc+c\(^2\)+b\(^2\)-a\(^2\)
a: a^3+b^3+c^3-3abc
=(a+b)^3+c^3-3ab(a+b)-3bac
=(a+b+c)(a^2+2ab+b^2-ac-bc+c^2)-3ab(a+b+c)
=(a+b+c)(a^2+b^2+c^2-ab-ac-bc)
b: Đề sai rồi bạn
c: 2(a+b+c)*(b/2+c/2-a/2)
=(a+b+c)(b+c-a)
=(b+c)^2-a^2
=c^2+2bc+c^2-a^2
a) Cho \(\dfrac{a}{b}=\dfrac{c}{d}\) (\(a,b,c,d\ne0\)). Chứng minh rằng:
1) \(\dfrac{2a+5b}{3a-4b}=\dfrac{2c+5d}{3c-4d}\)
2) \(\dfrac{ab}{cd}=\dfrac{a^2+b^2}{c^2+d^2}\)
3) \(\dfrac{a^3+b^3}{c^3+d^3}=\dfrac{\left(a+b\right)^3}{\left(c+d\right)^3}\) \(\left(\dfrac{a}{b}=\dfrac{c}{d}\ne1\right)\)
b)Cho \(\dfrac{2a+13b}{3a-7b}=\dfrac{2c+13d}{3c-7d}\). Chứng minh rằng:\(\dfrac{a}{b}=\dfrac{c}{d}\)
c)Cho \(\dfrac{cy-bz}{x}=\dfrac{az-cx}{y}=\dfrac{bx-ay}{z}\). Chứng minh rằng: \(\dfrac{a}{x}=\dfrac{b}{y}=\dfrac{c}{z}\)
Bài 1:
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk; c=dk\)
Khi đó: \(\left\{\begin{matrix} \frac{2a+5b}{3a-4b}=\frac{2bk+5b}{3bk-4b}=\frac{b(2k+5)}{b(3k-4)}=\frac{2k+5}{3k-4}\\ \frac{2c+5d}{3c-4d}=\frac{2dk+5d}{3dk-4d}=\frac{d(2k+5)}{d(3k-4)}=\frac{2k+5}{3k-4}\end{matrix}\right.\)
\(\Rightarrow \frac{2a+5b}{3a-4b}=\frac{2c+5d}{3c-4d}\)
Ta có đpcm.
Bài 2:
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk; c=dk\)
Khi đó: \(\frac{ab}{cd}=\frac{bk.b}{dk.d}=\frac{b^2}{d^2}\)
\(\frac{a^2+b^2}{c^2+d^2}=\frac{(bk)^2+b^2}{(dk)^2+d^2}=\frac{b^2(k^2+1)}{d^2(k^2+1)}=\frac{b^2}{d^2}\)
Do đó: \(\frac{ab}{cd}=\frac{a^2+b^2}{c^2+d^2}(=\frac{b^2}{d^2})\) . Ta có đpcm.
Bài 3:
a) Sửa điều kiện: \(\frac{a}{b}=\frac{c}{d}\neq -1\)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk; c=dk\)
Theo đkđb thì \(k\neq -1\) nên \(k^3+1\neq 0\); \(k+1\neq 0\)
Ta có: \(\frac{a^3+b^3}{c^3+d^3}=\frac{(bk)^3+b^3}{(dk)^3+d^3}=\frac{b^3(k^3+1)}{d^3(k^3+1)}=\frac{b^3}{d^3}\)
\(\frac{(a+b)^3}{(c+d)^3}=\frac{(bk+b)^3}{(dk+d)^3}=\frac{b^3(k+1)^3}{d^3(k+1)^3}=\frac{b^3}{d^3}\)
\(\Rightarrow \frac{a^3+b^3}{c^3+d^3}=\frac{(a+b)^3}{(c+d)^3}\) (đpcm)
b)
Đặt \(\frac{a}{b}=k; \frac{c}{d}=t\Rightarrow a=bk; c=dt\)
Ta cần cm \(k=t\)
Khi đó:
\(\frac{2a+13b}{3a-7b}=\frac{2bk+13b}{3bk-7b}=\frac{b(2k+13)}{b(3k-7)}=\frac{2k+13}{3k-7}\)
\(\frac{2c+13d}{3c-7d}=\frac{2dt+13d}{3dt-7d}=\frac{d(2t+13)}{d(3t-7)}=\frac{2t+13}{3t-7}\)
Vì \(\frac{2a+13b}{3a-7b}=\frac{2c+13d}{3c-7d}\Rightarrow \frac{2k+13}{3k-7}=\frac{2t+13}{3t-7}\)
\(\Rightarrow (2k+13)(3t-7)=(2t+13)(3k-7)\)
\(-14k+39t=-14t+39k\Rightarrow k=t\)
Ta có đpcm.
cho a, b, c > 0 và abc=1.
Chứng minh rằng: \(\dfrac{1}{a^2+2b^2+3}+\dfrac{1}{b^2+2c^2+3}+\dfrac{1}{c^2+2a^2+3}\le\dfrac{1}{2}\)