Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nhã Doanh
Xem chi tiết
Lightning Farron
19 tháng 7 2018 lúc 14:57

\(BDT\Leftrightarrow2a^4b+2b^4c+2c^4a+3ab^4+3bc^4+3ca^4\ge5a^2b^2c+5a^2bc^2+5ab^2c^2\)

Ta chứng minh được \(ab^4+bc^4+ca^4\ge a^2b^2c+a^2bc^2+ab^2c^2\)

\(\Leftrightarrow\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\ge ab+bc+ca\)

\(VT=\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}=\dfrac{a^4}{ab}+\dfrac{b^4}{bc}+\dfrac{c^4}{ac}\)

\(\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ca}\ge\dfrac{\left(ab+bc+ca\right)^2}{ab+bc+ca}=VP\)

Vậy ta cần chứng minh \(2a^4b+2b^4c+2c^4a+2ab^4+2bc^4+2ca^4\ge4a^2b^2c+4a^2bc^2+4ab^2c^2\)

\(\Leftrightarrow\sum_{cyc}\left(2c^3+bc^2-b^2c+ac^2-a^2c+3ab^2+3a^2b\right)\left(a-b\right)^2\ge0\)

Dấu "=" xảy ra khi \(a=b=c\)

tthnew
2 tháng 6 2019 lúc 9:06

Em có cách này tuy nhiên không chắc,do em mới học sos thôi,mong mọi người giúp đỡ ạ!

BĐT \(\Leftrightarrow\Sigma_{cyc}\left(\frac{7b^3+3ab^2-7a^2b-3a^3}{2a+3b}\right)\ge0\)\(\Leftrightarrow\Sigma_{cyc}\left(\frac{7b\left(b^2-a^2\right)+3a\left(b^2-a^2\right)}{2a+3b}\right)\ge0\)

\(\Leftrightarrow\Sigma_{cyc}\left(\frac{\left(b^2-a^2\right)\left(7b+3a\right)}{2a+3b}-2\left(b^2-a^2\right)\right)\ge0\) (ta không cần cộng thêm \(\Sigma_{cyc}2\left(b^2-a^2\right)\)\(\Sigma_{cyc}2\left(b^2-a^2\right)=\Sigma_{cyc}2\left(b^2-a^2+c^2-b^2+a^2-c^2\right)=0\))

\(\Leftrightarrow\Sigma_{cyc}\left(b^2-a^2\right)\left(\frac{7b+3a-4a-6b}{2a+3b}\right)\ge0\)\(\Leftrightarrow\Sigma_{cyc}\frac{\left(a+b\right)\left(a-b\right)^2}{2a+3b}\ge0\)

P/s: Hình như có gì đó sai sai ạ,mong mọi người check hộ em!Em cảm ơn nhiều ạ!

Lightning Farron
8 tháng 7 2018 lúc 22:18

sos helps :3

Yoriichi Tsugikuni
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 11 2023 lúc 20:52

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

=>\(a=bk;c=dk\)

1: \(\dfrac{2a+3c}{2b+3d}=\dfrac{2\cdot bk+3\cdot dk}{2b+3d}=\dfrac{k\left(2b+3d\right)}{2b+3d}=k\)

\(\dfrac{2a-3c}{2b-3d}=\dfrac{2bk-3dk}{2b-3d}=\dfrac{k\left(2b-3d\right)}{2b-3d}=k\)

Do đó: \(\dfrac{2a+3c}{2b+3d}=\dfrac{2a-3c}{2b-3d}\)

2: \(\dfrac{4a-3b}{4c-3d}=\dfrac{4\cdot bk-3b}{4\cdot dk-3d}=\dfrac{b\left(4k-3\right)}{d\left(4k-3\right)}=\dfrac{b}{d}\)

\(\dfrac{4a+3b}{4c+3d}=\dfrac{4bk+3b}{4dk+3d}=\dfrac{b\left(4k+3\right)}{d\left(4k+3\right)}=\dfrac{b}{d}\)

Do đó: \(\dfrac{4a-3b}{4c-3d}=\dfrac{4a+3b}{4c+3d}\)

3: \(\dfrac{3a+5b}{3a-5b}=\dfrac{3bk+5b}{3bk-5b}=\dfrac{b\left(3k+5\right)}{b\left(3k-5\right)}=\dfrac{3k+5}{3k-5}\)

\(\dfrac{3c+5d}{3c-5d}=\dfrac{3dk+5d}{3dk-5d}=\dfrac{d\left(3k+5\right)}{d\left(3k-5\right)}=\dfrac{3k+5}{3k-5}\)

Do đó: \(\dfrac{3a+5b}{3a-5b}=\dfrac{3c+5d}{3c-5d}\)

4: \(\dfrac{3a-7b}{b}=\dfrac{3bk-7b}{b}=\dfrac{b\left(3k-7\right)}{b}=3k-7\)

\(\dfrac{3c-7d}{d}=\dfrac{3dk-7d}{d}=\dfrac{d\left(3k-7\right)}{d}=3k-7\)

Do đó: \(\dfrac{3a-7b}{b}=\dfrac{3c-7d}{d}\)

Ngọc Diễm Nguyễn
Xem chi tiết
Nguyễn thành Đạt
26 tháng 6 2023 lúc 20:17

a) \(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2\right)-\left(a+b+c\right)\left(ab+bc+ac\right)\)

\(=a^3+ab^2+ac^2+a^2b+b^3+c^2b+a^2c+b^2c+c^3-a^2b-abc-a^2c-ab^2-b^2c-abc-abc-bc^2-ac^2\)

\(=a^3+b^3+c^3-3abc\left(đpcm\right)\)

b) Bạn chỉ cần nhân bung cả 2 vế ra là được á .

c) \(2\left(a+b+c\right)\left(\dfrac{b}{2}+\dfrac{c}{2}-\dfrac{a}{2}\right)\)

\(=2\left(a+b+c\right)\left(\dfrac{b+c-a}{2}\right)\)

\(=\left(a+b+c\right)\left(b+c-a\right)\)

\(=ab+ac-a^2+b^2+bc-ab+bc+c^2-ac\)

\(=2bc+b^2+c^2-a^2\left(đpcm\right)\)

Bakaa Jeanne
Xem chi tiết
Lương Đại
Xem chi tiết
Nguyễn Quốc Việt
Xem chi tiết
Nguyễn Trọng Chiến
21 tháng 3 2021 lúc 21:22

Ta có: \(\dfrac{a^3}{a^2+2b^2}=a-\dfrac{2ab^2}{a^2+2b^2}\ge a-\dfrac{2ab^2}{3\sqrt[3]{a^2b^4}}=a-\dfrac{2}{3}\sqrt[3]{ab^2}\ge a-\dfrac{2}{9}\left(a+b+b\right)=a-\dfrac{2}{9}\left(a+2b\right)\) Chứng minh tương tự ta được:

\(\dfrac{b^3}{b^2+2c^2}\ge b-\dfrac{2}{9}\left(b+2c\right);\dfrac{c^3}{c^2+2a^2}\ge c-\dfrac{2}{9}\left(c+2a\right)\)

\(\Rightarrow\dfrac{a^3}{a^2+2b^2}+\dfrac{b^3}{b^2+2c^2}+\dfrac{c^3}{c^2+2a^2}\ge a+b+c-\dfrac{2}{9}\left(a+2b+b+2c+c+2a\right)=a+b+c-\dfrac{2}{9}\left(3a+3b+3c\right)=\dfrac{1}{3}\left(a+b+c\right)\ge\dfrac{1}{3}\cdot3\sqrt[3]{abc}=1\)Dấu = xảy ra \(\Leftrightarrow a=b=c=1\)

Nguyenngocdiem
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 6 2023 lúc 22:26

a: a^3+b^3+c^3-3abc

=(a+b)^3+c^3-3ab(a+b)-3bac

=(a+b+c)(a^2+2ab+b^2-ac-bc+c^2)-3ab(a+b+c)

=(a+b+c)(a^2+b^2+c^2-ab-ac-bc)

b: Đề sai rồi bạn

c: 2(a+b+c)*(b/2+c/2-a/2)

=(a+b+c)(b+c-a)

=(b+c)^2-a^2

=c^2+2bc+c^2-a^2

Mikie Manako Trang
Xem chi tiết
Akai Haruma
20 tháng 11 2018 lúc 18:13

Bài 1:

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk; c=dk\)

Khi đó: \(\left\{\begin{matrix} \frac{2a+5b}{3a-4b}=\frac{2bk+5b}{3bk-4b}=\frac{b(2k+5)}{b(3k-4)}=\frac{2k+5}{3k-4}\\ \frac{2c+5d}{3c-4d}=\frac{2dk+5d}{3dk-4d}=\frac{d(2k+5)}{d(3k-4)}=\frac{2k+5}{3k-4}\end{matrix}\right.\)

\(\Rightarrow \frac{2a+5b}{3a-4b}=\frac{2c+5d}{3c-4d}\)

Ta có đpcm.

Akai Haruma
20 tháng 11 2018 lúc 18:15

Bài 2:

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk; c=dk\)

Khi đó: \(\frac{ab}{cd}=\frac{bk.b}{dk.d}=\frac{b^2}{d^2}\)

\(\frac{a^2+b^2}{c^2+d^2}=\frac{(bk)^2+b^2}{(dk)^2+d^2}=\frac{b^2(k^2+1)}{d^2(k^2+1)}=\frac{b^2}{d^2}\)

Do đó: \(\frac{ab}{cd}=\frac{a^2+b^2}{c^2+d^2}(=\frac{b^2}{d^2})\) . Ta có đpcm.

Akai Haruma
20 tháng 11 2018 lúc 18:31

Bài 3:

a) Sửa điều kiện: \(\frac{a}{b}=\frac{c}{d}\neq -1\)

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk; c=dk\)

Theo đkđb thì \(k\neq -1\) nên \(k^3+1\neq 0\); \(k+1\neq 0\)

Ta có: \(\frac{a^3+b^3}{c^3+d^3}=\frac{(bk)^3+b^3}{(dk)^3+d^3}=\frac{b^3(k^3+1)}{d^3(k^3+1)}=\frac{b^3}{d^3}\)

\(\frac{(a+b)^3}{(c+d)^3}=\frac{(bk+b)^3}{(dk+d)^3}=\frac{b^3(k+1)^3}{d^3(k+1)^3}=\frac{b^3}{d^3}\)

\(\Rightarrow \frac{a^3+b^3}{c^3+d^3}=\frac{(a+b)^3}{(c+d)^3}\) (đpcm)

b)

Đặt \(\frac{a}{b}=k; \frac{c}{d}=t\Rightarrow a=bk; c=dt\)

Ta cần cm \(k=t\)

Khi đó:

\(\frac{2a+13b}{3a-7b}=\frac{2bk+13b}{3bk-7b}=\frac{b(2k+13)}{b(3k-7)}=\frac{2k+13}{3k-7}\)

\(\frac{2c+13d}{3c-7d}=\frac{2dt+13d}{3dt-7d}=\frac{d(2t+13)}{d(3t-7)}=\frac{2t+13}{3t-7}\)

\(\frac{2a+13b}{3a-7b}=\frac{2c+13d}{3c-7d}\Rightarrow \frac{2k+13}{3k-7}=\frac{2t+13}{3t-7}\)

\(\Rightarrow (2k+13)(3t-7)=(2t+13)(3k-7)\)

\(-14k+39t=-14t+39k\Rightarrow k=t\)

Ta có đpcm.

Tường Nguyễn Thế
Xem chi tiết
Đạt Trần
17 tháng 1 2018 lúc 22:28

undefined

Tham khảo nhá