Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
quang
Xem chi tiết
Lấp La Lấp Lánh
1 tháng 11 2021 lúc 19:31

\(\dfrac{2x-3}{x-1}< \dfrac{1}{3}\left(đk:x\ne1\right)\)

\(\Leftrightarrow6x-9< x-1\Leftrightarrow5x< 8\Leftrightarrow x< \dfrac{8}{5}\) và ĐK \(x\ne1\)

\(\dfrac{2x-3}{x-1}>\dfrac{1}{3}\left(đk:x\ne1\right)\)

\(\Leftrightarrow x-1< 6x-9\Leftrightarrow5x>8\Leftrightarrow x>\dfrac{8}{5}\) và ĐK \(x\ne1\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
21 tháng 1 2019 lúc 9:18

a) |3x| = x + 6 (1)

Ta có 3x = 3x khi x ≥ 0 và 3x = -3x khi x < 0

Vậy để giải phương trình (1) ta quy về giải hai phương trình sau:

+ ) Phương trình 3x = x + 6 với điều kiện x ≥ 0

Ta có: 3x = x + 6 ⇔ 2x = 6 ⇔ x = 3 (TMĐK)

Do đó x = 3 là nghiệm của phương trình (1).

+ ) Phương trình -3x = x + 6 với điều kiện x < 0

Ta có -3x = x + 6 ⇔ -4x + 6 ⇔ x = -3/2 (TMĐK)

Do đó x = -3/2 là nghiệm của phương trình (1).

Vậy tập nghiệm của phương trình đã cho S = {3; -3/2}

ĐKXĐ: x ≠ 0, x ≠ 2

Quy đồng mẫu hai vễ của phương trình, ta được:

Vậy tập nghiệm của phương trình là S = {-1}

c) (x + 1)(2x – 2) – 3 > –5x – (2x + 1)(3 – x)

⇔ 2x2 – 2x + 2x – 2 – 3 > –5x – (6x – 2x2 + 3 – x)

⇔ 2x2 – 5 ≥ –5x – 6x + 2x2 – 3 + x

⇔ 10x ≥ 2 ⇔ x ≥ 1/5

Tập nghiệm: S = {x | x ≥ 1/5}

Ai Đấy
Xem chi tiết
Huỳnh Quang Sang
9 tháng 5 2021 lúc 15:38

\(\dfrac{x}{2x-6}-\dfrac{x}{2x+2}=\dfrac{2x}{\left(x+1\right)\left(x-3\right)}\left(ĐKXĐ:x\ne-1,x\ne3\right)\)

\(\Leftrightarrow\dfrac{x}{2\left(x-3\right)}-\dfrac{x}{2\left(x+1\right)}=\dfrac{2x}{\left(x+1\right)\left(x-3\right)}\)

\(\Leftrightarrow\dfrac{x\left(x+1\right)}{2\left(x+1\right)\left(x-3\right)}-\dfrac{x\left(x-3\right)}{2\left(x+1\right)\left(x-3\right)}=\dfrac{2x\cdot2}{2\left(x+1\right)\left(x-3\right)}\)

\(\Rightarrow x\left(x+1\right)-x\left(x-3\right)=4x\)

\(\Leftrightarrow x^2+x-x^2+3x=4x\)

\(\Leftrightarrow x^2+x-x^2+3x-4x=0\)

\(\Leftrightarrow0x=0\)

Phương trình có vô số nghiệm , trừ x = -1,x = 3

Vậy ...

\(\dfrac{12x+1}{12}< \dfrac{9x+1}{3}-\dfrac{8x+1}{4}\)

\(\Leftrightarrow12\cdot\dfrac{12x+1}{12}< 12\cdot\dfrac{9x+1}{3}-12\cdot\dfrac{8x+1}{4}\)

\(\Leftrightarrow12x+1< 4\left(9x+1\right)-3\left(8x+1\right)\)

\(\Leftrightarrow12x+1< 36x+4-24x-3\)

\(\Leftrightarrow12x+1< 12x+1\)

\(\Leftrightarrow12x-12x< 1-1\)

\(\Leftrightarrow0x< 0\)

Vậy S = {x | x \(\in R\)}

 

Hạ Băng Băng
Xem chi tiết
BoSo WF
Xem chi tiết
YangSu
12 tháng 4 2022 lúc 20:29

\(a,\dfrac{x-3}{x}=\dfrac{x-3}{x+3}\)\(\left(đk:x\ne0,-3\right)\)

\(\Leftrightarrow\dfrac{x-3}{x}-\dfrac{x-3}{x+3}=0\)

\(\Leftrightarrow\dfrac{\left(x-3\right)\left(x+3\right)-x\left(x-3\right)}{x\left(x+3\right)}=0\)

\(\Leftrightarrow x^2-9-x^2+3x=0\)

\(\Leftrightarrow3x-9=0\)

\(\Leftrightarrow3x=9\)

\(\Leftrightarrow x=3\left(n\right)\)

Vậy \(S=\left\{3\right\}\)

YangSu
12 tháng 4 2022 lúc 20:32

\(b,\dfrac{4x-3}{4}>\dfrac{3x-5}{3}-\dfrac{2x-7}{12}\)

\(\Leftrightarrow\dfrac{4x-3}{4}-\dfrac{3x-5}{3}+\dfrac{2x-7}{12}>0\)

\(\Leftrightarrow\dfrac{3\left(4x-3\right)-4\left(3x-5\right)+2x-7}{12}>0\)

\(\Leftrightarrow12x-9-12x+20+2x-7>0\)

\(\Leftrightarrow2x+4>0\)

\(\Leftrightarrow2x>-4\)

\(\Leftrightarrow x>-2\)

Huyền Lê
Xem chi tiết
Trúc Giang
20 tháng 7 2021 lúc 20:52

undefined

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
6 tháng 1 2019 lúc 13:46

a) (x + 2)(x – 1) < (x + 3)2 – 5 ⇔ x2 – x + 2x – 2 < x2 + 6x + 9 – 5

⇔ x – 6x < 2 + 4 ⇔ –5x < 6 ⇔ x > -6/5

Tập nghiệm : S = {x | x > -6/5}

⇔ 6 + 2(2x + 1) > 2x – 1

⇔ 6 + 4x + 2 > 2x – 1 ⇔ 2x > – 9 ⇔ x > -9/2

Tập nghiệm: S = {x | x > -9/2}

Vương Nguyệt Nguyệt
Xem chi tiết
Trúc Giang
4 tháng 3 2021 lúc 10:45

\(\dfrac{3}{x-2}\ge\dfrac{5}{2x-1}\)

ĐKXĐ: x ≠ 2; \(x\ne\dfrac{1}{2}\)

\(\dfrac{3}{x-2}\ge\dfrac{5}{2x-1}\)

\(\Leftrightarrow\dfrac{3}{x-2}-\dfrac{5}{2x-1}\ge0\)

\(\Leftrightarrow\dfrac{3\left(2x-1\right)-5\left(x-2\right)}{\left(x-2\right)\left(2x-1\right)}\ge0\)

\(\Leftrightarrow\dfrac{x+7}{\left(x-2\right)\left(2x-1\right)}\ge0\)

*Với: \(\dfrac{x+7}{\left(x-2\right)\left(2x-1\right)}=0\)

=> x + 7 = 0

<=> x =-7

*Với \(\dfrac{x+7}{\left(x-2\right)\left(2x-1\right)}>0\) (1)

Ta lâpj bảng xét dấu:

x

 

-7

 

1/2

 

2

 

X + 7

-

0

+

|

+

|

+

2x – 1

-

|

-

0

+

|

+

X - 2

-

|

-

|

-

0

+

BĐT (1)

-

0

+

||

-

||

+

 

Từ bảng trên ta có thể thấy: \(\dfrac{x+7}{\left(x-2\right)\left(2x-1\right)}>0\) khi -7 < x < 1/2 hoăcj x > 2

Vayj:.............

Phạm Trần Phát
Xem chi tiết

ĐKXĐ: \(x>3\)

Lấy logarit 2 vế: \(\left(2x^2-7x\right).ln\left(x-3\right)>0\)

\(\Leftrightarrow x\left(2x-7\right)ln\left(x-3\right)>0\)

Bảng xét dấu:

loading...

\(\Rightarrow\) Nghiệm của BPT là \(\left[{}\begin{matrix}3< x< \dfrac{7}{2}\\x>4\end{matrix}\right.\)

Hải Yến Lê
Xem chi tiết
Nguyễn Việt Lâm
16 tháng 3 2022 lúc 15:55

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+2x-3\ge0\\2x^2-3x+1\ge0\\x^2+2x-3\le2x^2-3x+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x\ge1\\x\le-3\end{matrix}\right.\\\left[{}\begin{matrix}x\ge1\\x\le\dfrac{1}{2}\end{matrix}\right.\\x^2-5x+4\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x\ge1\\x\le-3\end{matrix}\right.\\\left[{}\begin{matrix}x\ge4\\x\le1\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x\le-3\\x\ge4\end{matrix}\right.\)