chứng minh
a^2+5b^2-(3a+b)>=3ab-5
Chứng minh a2 + 5b2-(3a+b)>= 3ab-5
Chứng minh rằng:
a2+5b2 - (3a+b) ≥ 3ab-5
Links:
Chứng minh $a^2+5b^2-(3a+b)\geq 3ab-5$ - Bất đẳng thức và cực trị - Diễn đàn Toán học
Chứng minh a^2 + 5b^2 - (3a + b) ≥ 3ab - 5 - Toán học Lớp 8 - Bài tập Toán học Lớp 8 - Giải bài tập Toán học Lớp 8 | Lazi.vn - Cộng đồng Tri thức & Giáo dục
Chứng minh:a2+5b2-(3a+b)\(\ge\)3ab-5
\(a^2+5b-\left(3a+b\right)\ge3ab-5\)
\(\Leftrightarrow2a^2+10b^2-6a-2b-6ab+10\ge0\)
\(\Leftrightarrow\left(a^2-6ab+9b^2\right)+\left(a^2-6a+9\right)+\left(b^2-2b+1\right)\ge0\)
\(\Leftrightarrow\left(a-3b\right)^2+\left(a-3\right)^2+\left(b-1\right)^2\ge0\)
Đẳng thức xảy ra khi \(\hept{\begin{cases}a-3b=0\\a-3=0\\b-1=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}a=3\\b=1\end{cases}}\)
Dễ thế này cũng hỏi nổi, LẠY @@
cm BĐT :
a2+5b2-(3a+b)\(\ge\)3ab-5
\(a^2+5b^2-\left(3a+b\right)\ge3ab-5\)
\(\Leftrightarrow2a^2+10b^2-2\left(3a+b\right)\ge6ab-10\)
\(\Leftrightarrow2a^2+10b^2-6a-2b-6ab+10\ge0\)
\(\Leftrightarrow\left(a^2-6a+9\right)+\left(b^2-2b+1\right)+\left(a^2-6ab+9b^2\right)\ge0\)
\(\Leftrightarrow\left(a-3\right)^2+\left(b-1\right)^2+\left(a-3b\right)^2\ge0\)
\(\Leftrightarrowđcpm\)
Cho a,b,c không âm thỏa mãn \(a+b+c=3\)
a) Chứng minh rằng \(\sqrt{a^2+3a+5}\ge\frac{5a+13}{6}\)
b) Tìm GTNN của \(\sqrt{a^2+3ab+5b^2}+\sqrt{b^2+3bc+5c^2}+\sqrt{c^2+3ca+5a^2}\)
\(\sqrt{a^2+3a+5}\ge\frac{5a+13}{6}\Leftrightarrow a^2+3a+5\ge\frac{25a^2+130a+169}{36}\)
\(\Leftrightarrow36a^2+108a+180\ge25a^2+130a+169\Leftrightarrow11a^2-22a+11\ge0\)
\(\Leftrightarrow11\left(a-1\right)^2\ge0\forall a\inℝ\)
Dấu = xảy ra khi a=1
Ta có:
\(\sqrt{a^2+3ab+5b^2}=\sqrt{\left(\frac{25a^2}{36}+\frac{130ab}{36}+\frac{169}{36}\right)+\frac{11}{36}\left(a^2-2ab+b^2\right)}\)
\(=\sqrt{\left(\frac{5a}{6}+\frac{13b}{6}\right)^2+\frac{11}{36}\left(a-b\right)^2}\ge\frac{5a+13b}{6}\)
Tương tự:\(\sqrt{b^2+3bc+5c^2}\ge\frac{5b+13c}{6};\sqrt{c^2+3ca+5a^2}\ge\frac{5c+13a}{6}\)
Khi đó:\(P=\sqrt{a^2+3ab+5b^2}+\sqrt{b^2+3bc+5c^2}+\sqrt{c^2+3ac+5a^2}\)
\(\ge\frac{5a+13b+5b+13c+5c+13a}{6}=\frac{18\left(a+b+c\right)}{6}=3\left(a+b+c\right)=9\)
Dấu "=" xảy ra tại \(a=b=c=1\)
1) Cho \(\dfrac{a}{b}=\dfrac{c}{d}\) . Chứng minh rằng \(\dfrac{2a^2-3ab+5b^2}{2a^2+3ab}=\dfrac{2c^2-3cd+5d^2}{2c^2+3cd}\)
2) Cho \(\dfrac{a}{c}=\dfrac{c}{b}\). Chứng minh rằng \(\dfrac{b^2-c^2}{a^2+c^2}=\dfrac{b-a}{a}\)
3) Cho \(\dfrac{a}{b}=\dfrac{c}{d}\).Chứng minh rằng\(\dfrac{3a^6+c^6}{3b^6+d^6}=\dfrac{\left(a+c\right)^6}{\left(b+d\right)^6}\)
Bài 1:
$\frac{a}{b}=\frac{c}{d}=t\Rightarrow a=bt; c=dt$. Khi đó:
\(\frac{2a^2-3ab+5b^2}{2a^2+3ab}=\frac{2(bt)^2-3.bt.b+5b^2}{2(bt)^2+3bt.b}=\frac{b^2(2t^2-3t+5)}{b^2(2t^2+3t)}\)
$=\frac{2t^2-3t+5}{2t^2+3t}(1)$
\(\frac{2c^2-3cd+5d^2}{2c^2+3cd}=\frac{2(dt)^2-3.dt.d+5d^2}{2(dt)^2+3dt.d}=\frac{d^2(2t^2-3t+5)}{d^2(2t^2+3t)}=\frac{2t^2-3t+5}{2t^2+3t}(2)\)
Từ $(1);(2)$ suy ra đpcm.
Bài 2:
Từ $\frac{a}{c}=\frac{c}{b}\Rightarrow c^2=ab$. Khi đó:
$\frac{b^2-c^2}{a^2+c^2}=\frac{b^2-ab}{a^2+ab}=\frac{b(b-a)}{a(a+b)}$ (đpcm)
Bài 3:
Đặt $\frac{a}{b}=\frac{c}{d}=t\Rightarrow a=bt; c=dt$
Khi đó:
$\frac{3a^6+c^6}{3b^6+d^6}=\frac{3(bt)^6+(dt)^6}{3b^6+d^6}=\frac{t^6(3b^6+d^6)}{3b^6+d^6}=t^6(*)$
Và:
$\frac{(a+c)^6}{(b+d)^6}=(\frac{bt+dt}{b+d})^6=t^6(**)$
Từ $(*); (**)\Rightarrow $ đpcm.
Cho tỉ lệ thức : \(\dfrac{a}{b}=\dfrac{c}{d}\) . Chứng minh : \(\dfrac{2a^2-3ab+5b^2}{2b^2+3ab}=\dfrac{2c^2-3cb+5b^2}{2b^2+3ab}=\dfrac{2c^2-3cd+5d^2}{2d^2+3cd}\) . Với điều kiện mẫu thức được xác định.
Chứng minh các đẳng thức :
1) (a + b)^2= a^2 + 2ab + b^2
2) ( a-b)^3=a^3-3a^2b+3ab^2-b^3
1) \(\left(a+b\right)^2\)
\(=\left(a+b\right)\left(a+b\right)\)
\(=a^2+ab+ab+b^2\)
\(=a^2+2ab+b^2\left(dpcm\right)\)
2) \(\left(a-b\right)^3\)
\(=\left(a-b\right)\left(a-b\right)\left(a-b\right)\)
\(=\left(a^2-ab-ab+b^2\right)\left(a-b\right)\)
\(=\left(a^2-2ab+b^2\right)\left(a-b\right)\)
\(=a^3-a^2b-2a^2+2ab^2+ab^2-b^3\)
\(=a^3-3a^2b+3ab^2-b^3\left(dpcm\right)\)
`a)`
`(a+b)^2`
`=(a+b)(a+b)`
`=a^2+ab+ab+b^2`
`=a^2+2ab+b^2`
`->` ĐPCM
`b)` `(a-b)^3`
`=(a-b)(a-b)(a-b)`
`=(a^2-2ab+b^2)(a-b)`
`=a^3-3a^2b+3ab^2-b^3`
`->` ĐPCM
chứng minh \(a^2+5b^2-\left(3a+b\right)\ge3ab-5\)