\(\sqrt{11-2\sqrt{30}}-\sqrt{11+2\sqrt{30}}\)
tính :
\(\sqrt{11-2\sqrt{30}}-\sqrt{11+2\sqrt{30}}\)
Câu 1: Tính
a. \(\sqrt{3\dfrac{6}{25}}\) b. \(\sqrt[3]{261}\) c. \(\sqrt{8,1}\) . \(\sqrt{20}\). \(\sqrt{8}\)
d. \(\sqrt{11+2\sqrt{30}}-\sqrt{11-2\sqrt{30}}\)
\(a,=\sqrt{\dfrac{81}{25}}=\dfrac{9}{5}\\ b,\approx6,39\\ c,=\sqrt{8,1\cdot20\cdot8}=\sqrt{81\cdot16}=\sqrt{81}\cdot\sqrt{16}=9\cdot4=36\\ d,=\sqrt{\left(\sqrt{6}+\sqrt{5}\right)^2}-\sqrt{\left(\sqrt{6}-\sqrt{5}\right)^2}\\ =\sqrt{6}+\sqrt{5}-\sqrt{6}+\sqrt{5}=2\sqrt{5}\)
a) \(\sqrt{3\dfrac{6}{25}}=\sqrt{\dfrac{81}{25}}=\dfrac{9}{5}\)
b) \(\sqrt[3]{216}=6\)
c) \(\sqrt{8,1}.\sqrt{20}.\sqrt{8}=\dfrac{9\sqrt{10}}{10}.2\sqrt{5}.2\sqrt{2}=36\)
d) \(\sqrt{11+2\sqrt{30}}-\sqrt{11-2\sqrt{30}}=\sqrt{\left(\sqrt{6}+\sqrt{5}\right)^2}-\sqrt{\left(\sqrt{6}-\sqrt{5}\right)^2}=\sqrt{6}+\sqrt{5}-\sqrt{6}+\sqrt{5}=2\sqrt{5}\)
1. Rút gọn các biểu thức sau:
A = \(\sqrt{31-2\sqrt{30}}\)
B = \(\sqrt{11-2\sqrt{30}}\)
C = \(\sqrt{13-2\sqrt{30}}\)
D = \(\sqrt{39-6\sqrt{30}}\)
1.
Ta có: \(A=\sqrt{31-2\sqrt{30}}=\sqrt{\left(\sqrt{30}-1\right)^2}=\left|\sqrt{30}-1\right|=\sqrt{30}-1\)
\(B=\sqrt{11-2\sqrt{30}}=\sqrt{\left(\sqrt{6}-\sqrt{5}\right)^2}=\left|\sqrt{6}-\sqrt{5}\right|=\sqrt{6}-\sqrt{5}\)
\(C=\sqrt{13-2\sqrt{30}}=\sqrt{\left(\sqrt{10}-\sqrt{3}\right)^2}=\left|\sqrt{10}-\sqrt{3}\right|=\sqrt{10}-\sqrt{3}\)
\(D=\sqrt{39-6\sqrt{30}}=\sqrt{\left(\sqrt{30}-3\right)^2}=\left|\sqrt{30}-3\right|=\sqrt{30}-3\)
\(A=\sqrt{31-2\sqrt{30}}=\sqrt{30}-1\)
\(B=\sqrt{11-2\sqrt{30}}=\sqrt{6}-\sqrt{5}\)
\(C=\sqrt{13-2\sqrt{30}}=\sqrt{10}-\sqrt{3}\)
\(D=\sqrt{39-6\sqrt{30}}=\sqrt{30}-3\)
tinh gia tri bieu thut :\(\sqrt{11-2\sqrt{30}}-\sqrt{11+2\sqrt{30}}\)
\(\sqrt{11-2\sqrt{30}}-\sqrt{11+2\sqrt{30}}\)
\(=\sqrt{\left(\sqrt{6}-\sqrt{5}\right)^2}-\sqrt{\left(\sqrt{6}+\sqrt{5}\right)^2}\)
\(=\sqrt{6}-\sqrt{5}-\sqrt{6}-\sqrt{5}\)
\(=-2\sqrt{5}\)
Rút gọn biểu thức:
\(A=\sqrt{\left(\sqrt{7}-2\right)^2}+\sqrt{\left(\sqrt{7}-5\right)^2}\)
\(B=\sqrt{23+8\sqrt{7}}-\sqrt{7}\)
\(C=\sqrt{11+2\sqrt{30}}-\sqrt{11-2\sqrt{30}}\)
\(A=\sqrt{7}-2+\sqrt{7}-5\\ =2\sqrt{7}-7\\ =\sqrt{7}\left(2-\sqrt{7}\right)\)
\(B=\sqrt{16+8\sqrt{7}+7}-\sqrt{7}\)
\(=\sqrt{\left(4+\sqrt{7}\right)^2}-\sqrt{7}\)
\(=4+\sqrt{7}-\sqrt{7}\\ =4\)
\(C=\sqrt{6+2\sqrt{30}+5}-\sqrt{6-2\sqrt{30}+5}\\ =\sqrt{\left(\sqrt{6}+\sqrt{5}\right)^2}-\sqrt{\left(\sqrt{6}-\sqrt{5}\right)^2}\\ =\sqrt{6}+\sqrt{5}-\sqrt{6}+\sqrt{5}\\ =2\sqrt{5}\)
D = \(\sqrt{11-2\sqrt{30}}\) - \(\sqrt{11+2\sqrt{30}}\)
giúp mik với mn ơi
\(D=\sqrt{6-2.\sqrt{5}.\sqrt{6}+5}-\sqrt{6+2.\sqrt{5}.\sqrt{6}+5}\)
\(D=\sqrt{\left(\sqrt{6}-\sqrt{5}\right)^2}-\sqrt{\left(\sqrt{6}+\sqrt{5}\right)^2}\)
\(D=|\sqrt{6}-\sqrt{5}|-|\sqrt{6}+\sqrt{5}|\)
\(D=\sqrt{6}-\sqrt{5}-\sqrt{6}-\sqrt{5}\)
\(D=-2\sqrt{5}\)
\(\sqrt{7-\sqrt{24}}-\dfrac{\sqrt{50}-5}{\sqrt{10}-\sqrt{5}}+\sqrt{\left(11-\sqrt{120}\right)\left(11+2\sqrt{30}\right)^2}\)
Rút gọn giùm mình với ạ
\(\sqrt{7-\sqrt{24}}-\dfrac{\sqrt{50}-5}{\sqrt{10}-\sqrt{5}}+\sqrt{\left(11+\sqrt{120}\right)\left(11+2\sqrt{30}\right)^2}\)
\(=\sqrt{7-2\sqrt{6}}-\dfrac{5\left(\sqrt{2}-1\right)}{\sqrt{5}\left(\sqrt{2}-1\right)}+\left|11+2\sqrt{30}\right|\sqrt{11-2\sqrt{30}}\)
\(=\sqrt{1^2-2\sqrt{6}\cdot1+\left(\sqrt{6}\right)^2}-\dfrac{\sqrt{5}\cdot\sqrt{5}}{\sqrt{5}}+\left(11+2\sqrt{30}\right)\sqrt{\left(\sqrt{6}\right)^2-2\sqrt{5}\cdot\sqrt{6}+\left(\sqrt{5}\right)^2}\)
\(=\sqrt{\left(1-\sqrt{6}\right)^2}-\sqrt{5}+\left(11+2\sqrt{30}\right)\sqrt{\left(\sqrt{6}-\sqrt{5}\right)^2}\)
\(=\left|1-\sqrt{6}\right|-\sqrt{5}+\left(11+2\sqrt{30}\right)\left|\sqrt{6}-\sqrt{5}\right|\)
\(=-1+6-\sqrt{5}+\left(\sqrt{6}+\sqrt{5}\right)^2\left(\sqrt{6}-\sqrt{5}\right)\)
\(=\sqrt{6}-1-\sqrt{5}+\left[\left(\sqrt{6}\right)^2-\left(\sqrt{5}\right)^2\right]\left(\sqrt{6}+\sqrt{5}\right)\)
\(=\sqrt{6}-1-\sqrt{5}+\left(6-5\right)\left(\sqrt{6}+\sqrt{5}\right)\)
\(=\sqrt{6}-1-\sqrt{5}+\sqrt{6}+\sqrt{5}\)
\(=2\sqrt{6}-1\)
\(=\sqrt{6+1-2\sqrt{6}}-\dfrac{\sqrt{5}\left(\sqrt{10}-\sqrt{5}\right)}{\sqrt{10}-\sqrt{5}}+\sqrt{\left(11-\sqrt{120}\right)\left(11+\sqrt{120}\right)^2}\\ =\sqrt{\left(\sqrt{6}-\sqrt{1}\right)^2}-\sqrt{5}+\sqrt{\left(11^2-120\right)\left(11+2\sqrt{30}\right)}\\ =\sqrt{6}-\sqrt{1}-\sqrt{5}+\sqrt{1\left(6+5+2\sqrt{6\cdot5}\right)}\\ =\sqrt{6}-\sqrt{1}-\sqrt{5}+\sqrt{\left(\sqrt{6}+\sqrt{5}\right)^2}\\ =\sqrt{6}-\sqrt{1}-\sqrt{5}+\sqrt{6}+\sqrt{5}=2\sqrt{6}-\sqrt{1}\)
\(\left(\sqrt{11}-\sqrt{3}\right)\left(\sqrt{13-\sqrt{6}+2\sqrt{30-\sqrt{54}}}+\sqrt{11}-\sqrt{10-\sqrt{6}}\right)\)
RÚT GỌN
Rút gọn:
A = \(\left(\sqrt{11}-\sqrt{3}\right)\left(\sqrt{13-\sqrt{6}+2\sqrt{30-\sqrt{54}}}+\sqrt{11}-\sqrt{10-\sqrt{6}}\right)\)