Ai giải giúp mình với, mình xin cảm ơn:
1. Tìm x,biết: \(\sqrt{4x}-3\sqrt{x}+2\sqrt{15x}=18\)
2. Rút gọn: B=\(\dfrac{1}{\sqrt{11-2\sqrt{30}}}-\dfrac{3}{7-2\sqrt{10}}\)
3. Chứng minh rằng: \(8+2\sqrt{10+2\sqrt{5}}+8-2\sqrt{10+2\sqrt{5}}=\sqrt{2}\left(\sqrt{5}+1\right)\)
Rút gọn
A=\(\dfrac{1}{\sqrt{1}-\sqrt{2}}-\dfrac{1}{\sqrt{2}-\sqrt{3}}+\dfrac{1}{\sqrt{3}-\sqrt{4}}-...-\dfrac{1}{\sqrt{24}-\sqrt{25}}\)
B=\(\dfrac{5}{4+\sqrt{11}}+\dfrac{11-3\sqrt{11}}{\sqrt{11}-3}-\dfrac{4}{\sqrt{5}-1}+\sqrt{\left(\sqrt{5}-2\right)^2}\)
C=\(\dfrac{\sqrt{x}+1}{x\sqrt[]{x}+x+\sqrt{x}}:\dfrac{1}{x^2-\sqrt{x}}\) (với x>0; x#1)
D=\(\dfrac{\sqrt{x^2-10x+25}}{x-5}\)
\(2.\sqrt{\frac{6-\sqrt{11}}{2}}+\sqrt{\left(\sqrt{11}-4\right)^2}\)
Rút gọn:
\(2\left(\sqrt{10}-\sqrt{2}\right)\sqrt{4+\sqrt{6-2\sqrt{5}}}\)
\(\left(4\sqrt{2}+\sqrt{30}\right)\left(\sqrt{5}-\sqrt{3}\right)\sqrt{4-\sqrt{15}}\)
Rút gọn:
\(\sqrt{11+6\sqrt{2}}-\sqrt{51+14\sqrt{2}}\)
a)\(\dfrac{5}{4-\sqrt{11}}+\dfrac{1}{3+\sqrt{7}}-\dfrac{6}{\sqrt{7-2}}-\dfrac{\sqrt{7-5}}{2}\) =4+\(\sqrt{11-3\sqrt{7}}\)
b)\(\dfrac{\sqrt{x+\sqrt{y}}}{2\left(\sqrt{x}-\sqrt{y}\right)}-\dfrac{\sqrt{x-\sqrt{y}}}{2\left(\sqrt{x+\sqrt{y}}\right)}-\dfrac{y+x}{y-x}=\dfrac{\sqrt{x}+\sqrt{y}}{\sqrt{x-\sqrt{y}}}\)
chứng minh đẳng thúc
\(\dfrac{5}{4-\sqrt{11}}+\dfrac{1}{3+\sqrt{7}}-\dfrac{6}{\sqrt{7}-2}-\dfrac{\sqrt{7}-5}{2}=4+\sqrt{11}-3\sqrt{7}\)
a) \(\dfrac{5-2\sqrt{ }5}{\sqrt{ }5-2}-\dfrac{11}{4+\sqrt{ }5} \)
b)\(\sqrt{9+4\sqrt{ }5-\sqrt{ }6-2\sqrt{ }5}\)
c)\(\sqrt{17-3\sqrt{ }32+\sqrt{ }17+\sqrt{ }32}\)
Giải PT:
a) \(\sqrt{11+6\sqrt{2}}\) = \(\sqrt{2x^2-6x\sqrt{2}+9}\)
b) \(\sqrt{4x^2+4x\sqrt{7}+7}\) - \(\sqrt{8-2\sqrt{7}}\) = 0
c) \(\sqrt{x^2}\) = x
d) \(\sqrt{x^2-2x+1}\) = x-1