\(VT=4+\sqrt{11}+\dfrac{3}{2}-\dfrac{1}{2}\sqrt{7}-4-2\sqrt{7}-\dfrac{1}{2}\sqrt{7}+\dfrac{5}{2}\)
\(=4+\sqrt{11}-3\sqrt{7}\)
\(VT=4+\sqrt{11}+\dfrac{3}{2}-\dfrac{1}{2}\sqrt{7}-4-2\sqrt{7}-\dfrac{1}{2}\sqrt{7}+\dfrac{5}{2}\)
\(=4+\sqrt{11}-3\sqrt{7}\)
a)\(\dfrac{5}{4-\sqrt{11}}+\dfrac{1}{3+\sqrt{7}}-\dfrac{6}{\sqrt{7-2}}-\dfrac{\sqrt{7-5}}{2}\) =4+\(\sqrt{11-3\sqrt{7}}\)
b)\(\dfrac{\sqrt{x+\sqrt{y}}}{2\left(\sqrt{x}-\sqrt{y}\right)}-\dfrac{\sqrt{x-\sqrt{y}}}{2\left(\sqrt{x+\sqrt{y}}\right)}-\dfrac{y+x}{y-x}=\dfrac{\sqrt{x}+\sqrt{y}}{\sqrt{x-\sqrt{y}}}\)
a, \(\dfrac{5}{4-\sqrt{11}}+\dfrac{1}{3+\sqrt{7}}-\dfrac{6}{\sqrt{7}-2}-\dfrac{\sqrt{7}-5}{2}=4+\sqrt{11}-3\sqrt{7}\)
b, \(\dfrac{\sqrt{x}+\sqrt{y}}{2\left(\sqrt{x}-\sqrt{y}\right)}-\dfrac{\sqrt{x}-\sqrt{y}}{2\left(\sqrt{x}+\sqrt{y}\right)}-\dfrac{y+x}{y-x}=\dfrac{\sqrt{x}+\sqrt{y}}{\sqrt{x}-\sqrt{y}}\)
Các bạn giúp mk vs, Mk cần gấp.
Bài 1 Thực hiện các phép tính sau:
a) \(\dfrac{\sqrt{7}-5}{2}-\dfrac{6-2\sqrt{7}}{4}+\dfrac{6}{\sqrt{7}-2}-\dfrac{5}{4+\sqrt{7}}\)
b) \(\dfrac{2}{\sqrt{6}-2}+\dfrac{2}{\sqrt{6}+2}+\dfrac{5}{\sqrt{6}}\)
c) \(\dfrac{1}{\sqrt{3}}+\dfrac{1}{3\sqrt{2}}+\dfrac{1}{\sqrt{3}}\sqrt{\dfrac{5}{12}-\dfrac{1}{\sqrt{6}}}\)
f) 2\(\sqrt{3-\sqrt{3+\sqrt{13+\sqrt{48}}}}\)
CMR:\(\dfrac{1}{1+\sqrt{3}}+\dfrac{1}{\sqrt{5}+\sqrt{7}}+\dfrac{1}{\sqrt{9}+\sqrt{11}}+...+\dfrac{1}{\sqrt{97}+\sqrt{99}}>\dfrac{9}{4}\)
RÚt gọn c)\(\dfrac{1}{\sqrt{1}+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+\dfrac{1}{\sqrt{3}+\sqrt{4}}+...+\dfrac{1}{\sqrt{899}+\sqrt{900}}\)
d)\(\dfrac{4}{\sqrt{7}-\sqrt{3}}+\dfrac{6}{3+\sqrt{3}}+\dfrac{\sqrt{7}-7}{\sqrt{7}-1}\)
e) \(\dfrac{x+5-x\sqrt{x-1}}{x-1-3\sqrt{x-1}}\)
b) \(\dfrac{\sqrt{5}-\sqrt{15}}{1-\sqrt{3}}-\sqrt{21+4\sqrt{5}}\)
=)) giúp câu nào được thì giúp ạ <3
Thu gọn:
a. \(\sqrt{\dfrac{3\sqrt{3}-4}{2\sqrt{3}+1}}-\sqrt{\dfrac{\sqrt{3}+4}{5-2\sqrt{3}}}\)
b. \(\dfrac{2+\sqrt{3}}{\sqrt{2}+\sqrt{2+\sqrt{3}}}-\dfrac{2-\sqrt{3}}{\sqrt{2}-\sqrt{2-\sqrt{3}}}\)
c. \(\dfrac{4+\sqrt{7}}{\sqrt{14}+\sqrt{4+\sqrt{7}}}-\dfrac{4-\sqrt{7}}{\sqrt{14}+\sqrt{4-\sqrt{7}}}\)
Giải phương trình
\(a.\dfrac{3}{4}\sqrt{4x}-\sqrt{4x}+5=\dfrac{1}{4}\sqrt{4x}\)
\(b.\sqrt{3-x}-\sqrt{27-9x}+1,25.\sqrt{48-16x}=6\)
\(c.\dfrac{5\sqrt{x}-2}{8\sqrt{x}+2,5}=\dfrac{2}{7}\)
\(d.\sqrt{9x^2+12x+4}=4\)
Chứng minh các đẳng thức sau :
a) \(\left(\dfrac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-2}-\dfrac{\sqrt{216}}{6}\right).\dfrac{1}{\sqrt{6}}=-1,5\)
b) \(\left(\dfrac{\sqrt{14}-\sqrt{7}}{1-\sqrt{2}}+\dfrac{\sqrt{15}-\sqrt{5}}{1-\sqrt{3}}\right):\dfrac{1}{\sqrt{7}-\sqrt{5}}=-2\)
c) \(\dfrac{a\sqrt{b}+b\sqrt{a}}{\sqrt{ab}}:\dfrac{1}{\sqrt{a}-\sqrt{b}}=a-b\) với a, b dương và \(a\ne b\)
d) \(\left(1+\dfrac{a+\sqrt{a}}{\sqrt{a}+1}\right)\left(1-\dfrac{a-\sqrt{a}}{\sqrt{a}-1}\right)=1-a\) với \(a\ge0\) và \(a\ne1\)
Rút gọn
A=\(\dfrac{1}{\sqrt{1}-\sqrt{2}}-\dfrac{1}{\sqrt{2}-\sqrt{3}}+\dfrac{1}{\sqrt{3}-\sqrt{4}}-...-\dfrac{1}{\sqrt{24}-\sqrt{25}}\)
B=\(\dfrac{5}{4+\sqrt{11}}+\dfrac{11-3\sqrt{11}}{\sqrt{11}-3}-\dfrac{4}{\sqrt{5}-1}+\sqrt{\left(\sqrt{5}-2\right)^2}\)
C=\(\dfrac{\sqrt{x}+1}{x\sqrt[]{x}+x+\sqrt{x}}:\dfrac{1}{x^2-\sqrt{x}}\) (với x>0; x#1)
D=\(\dfrac{\sqrt{x^2-10x+25}}{x-5}\)