Cho 2 biểu thức
A=\(\dfrac{4x - 7}{x - 2}\); B=\(\dfrac{3x^2 - 9x + 2}{x - 3}\)
a) Tìm giá trị nguyên của x để mỗi biểu thức có giá trị nguyên
b) Tìm giá trị nguyên của x để cả hai biểu thức có cùng giá trị nguyên
1) Cho biểu thức : A=\(\dfrac{4x^2}{x^2-4}\)+\(\dfrac{1}{x+2}\)-\(\dfrac{1}{x-2}\) (Với x≠2 và x≠ -2)
a.Rút gọn biểu thức A.
b. Tính giá trị của biểu thức A khi x=4.
2) Rút gọn biểu thức A=\(\dfrac{x}{x-1}\)+\(\dfrac{3}{x+1}\)+\(\dfrac{3-5x}{x^2-1}\) , với x≠ -1 và x≠1
3) Rút gọn biểu thức P=\(\dfrac{2}{x-2}\)+\(\dfrac{1}{x+2}\)\(\dfrac{6+5x}{4-x^2}\), với x≠ -2 và x≠ 2
4) Cho biểu thỨC : A= \(\dfrac{2x}{x^2-25}\)+\(\dfrac{5}{5-x}\)-\(\dfrac{1}{x+5}\)( với x≠5 và x≠ -5)
a. Rút gọn biểu thức A
b. Tính giá trị của biểu thức A khi x=\(\dfrac{4}{5}\).
5) Cho biểu thức : M =\(\dfrac{x^2}{x^2+2x}\)+\(\dfrac{2}{x+2}\)+\(\dfrac{2}{x}\) ( với x ≠0 và x≠ -2)
a. Rút gọn biểu thức M
b. Tính giá trị của biểu thức M khi: x=\(-\dfrac{3}{2}\)
MN BIẾT LÀM CÂU NÀO THÌ LÀM CÂU ĐÓ CŨNG ĐƯỢC AH!
1,
\(A=\dfrac{4x^2}{\left(x-2\right)\left(x+2\right)}+\dfrac{x-2}{\left(x-2\right)\left(x+2\right)}-\dfrac{x+2}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{4x^2+x-2-\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}=\dfrac{4x^2-4}{\left(x-2\right)\left(x+2\right)}\)
\(x=4\Rightarrow A=\dfrac{4.x^2-4}{\left(4-2\right)\left(4+2\right)}=...\)
2.
\(A=\dfrac{x\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}+\dfrac{3\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}+\dfrac{3-5x}{\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{x\left(x+1\right)+3\left(x-1\right)+3-5x}{\left(x-1\right)\left(x+1\right)}=\dfrac{x^2-2x+1}{\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}=\dfrac{x-1}{x+1}\)
3.
Đề lỗi, thiếu dấu trước \(\dfrac{6+5x}{4-x^2}\)
4.
\(A=\dfrac{2x}{\left(x-5\right)\left(x+5\right)}-\dfrac{5\left(x+5\right)}{\left(x-5\right)\left(x+5\right)}-\dfrac{x-5}{\left(x-5\right)\left(x+5\right)}\)
\(=\dfrac{2x-5\left(x+5\right)-\left(x-5\right)}{\left(x-5\right)\left(x+5\right)}=\dfrac{-4x-20}{\left(x-5\right)\left(x+5\right)}\)
\(=\dfrac{-4\left(x+5\right)}{\left(x-5\right)\left(x+5\right)}=\dfrac{-4}{x-5}\)
\(x=\dfrac{4}{5}\Rightarrow A=\dfrac{-4}{\dfrac{4}{5}-5}=\dfrac{20}{21}\)
5.
\(M=\dfrac{x^2}{x\left(x+2\right)}+\dfrac{2x}{x\left(x+2\right)}+\dfrac{2\left(x+2\right)}{x\left(x+2\right)}\)
\(=\dfrac{x^2+2x+2\left(x+2\right)}{x\left(x+2\right)}=\dfrac{x^2+4x+4}{x\left(x+2\right)}\)
\(=\dfrac{\left(x+2\right)^2}{x\left(x+2\right)}=\dfrac{x+2}{x}\)
\(x=-\dfrac{3}{2}\Rightarrow M=\dfrac{-\dfrac{3}{2}+2}{-\dfrac{3}{2}}=-\dfrac{1}{3}\)
Cho biểu thức A= \(\dfrac{4x+7}{x^2+2}\). Tìm giá trị lớn nhất của biểu thức A
\(A=\dfrac{4x+7}{x^2+2}=\dfrac{-4x^2+4x-1+4x^2+8}{x^2+2}=\dfrac{-\left[\left(2x\right)^2-2\cdot2x\cdot1+1^2\right]+4\left(x^2+2\right)}{x^2+2}\)
\(=\dfrac{-\left(2x-1\right)^2}{x^2+2}+4\le4\)
Vậy \(A_{max}=4\Leftrightarrow x=\dfrac{1}{2}\)
Cho biểu thức A = \(\left(\dfrac{x^2}{x^3-4x}+\dfrac{6}{6-3x}+\dfrac{1}{x+2}\right):\dfrac{6}{x+2}\)
a Rút gọn biểu thức A
b .Tính giá trị biểu thức A khi x = 3, x = 2
c Tính giá trị của x để A = 2
a: \(A=\left(\dfrac{x}{\left(x-2\right)\left(x+2\right)}-\dfrac{2}{x-2}+\dfrac{1}{x+2}\right)\cdot\dfrac{x+2}{6}\)
\(=\dfrac{x-2x-4+x-2}{\left(x+2\right)\left(x-2\right)}\cdot\dfrac{x+2}{6}=\dfrac{-6}{6}\cdot\dfrac{1}{x-2}=\dfrac{-1}{x-2}\)
b: x=2 ko thỏa mãn ĐKXĐ
=>Loại
Khi x=3 thì A=-1/(3-2)=-1
c: A=2
=>x-2=-1/2
=>x=3/2
Cho biểu thức: \(A=\dfrac{2+x}{2-x}+\dfrac{4x^2}{4-x^2}-\dfrac{2-x}{2+x}\)
a) Tìm điều kiện xác định rồi rút gọn biểu thức A.
b) Tìm x để A = - 5
a: ĐKXĐ: \(x\notin\left\{2;-2\right\}\)
\(A=\dfrac{-\left(x+2\right)}{x-2}-\dfrac{4x^2}{\left(x-2\right)\left(x+2\right)}+\dfrac{x-2}{x+2}\)
\(=\dfrac{-x^2-4x-4-4x^2+x^2-4x+4}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{-4x^2-8x}{\left(x-2\right)\left(x+2\right)}=\dfrac{-4x}{x-2}\)
Cho biểu thức A = \(\dfrac{1}{2}\)x3 - 2x2 - 4x - \(\dfrac{1}{2}\)x3 - x + 1.
a)Thu gọn biểu thức A.
b) tính giá trị của biểu thức tại x=2
\(a,A=\dfrac{1}{2}x^3-2x^2-4x-\dfrac{1}{2}x^3-x+1\\ =-2x^2-5x+1\)
b, Thay x=2 vào A ta có:
\(A=-2.2^2-5.2+1=-8-10+1=-17\)
Cho P = \(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}+\dfrac{3x+3}{9-x}\) và Q = \(\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\) với \(x\ge0;x\ne9\)
a) Rút gọn biểu thức P. Tính M = P : Q
b) Tìm giá trị nhỏ nhất của biểu thức A = \(x.M+\dfrac{4x+7}{\sqrt{x}+3}\)
a: \(P=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{x-9}=\dfrac{-3\left(\sqrt{x}+1\right)}{x-9}\)
\(M=\dfrac{-3\left(\sqrt{x}+1\right)}{x-9}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}+1}=\dfrac{-3}{\sqrt{x}+3}\)
b: \(A=\dfrac{-3x+4x+7}{\sqrt{x}+3}=\dfrac{x+7}{\sqrt{x}+3}=\dfrac{x-9+16}{\sqrt{x}+3}\)
=>\(A=\sqrt{x}-3+\dfrac{16}{\sqrt{x}+3}=\sqrt{x}+3+\dfrac{16}{\sqrt{x}+3}-6>=2\sqrt{16}-6=2\)
Dấu = xảy ra khi x=1
Cho 2 biểu thức:
A=\(\dfrac{5}{x+2}+\dfrac{3}{2-x}-\dfrac{15-x}{4-x^2}\) B=\(\dfrac{2x+1}{x^2-4}\)
a) Tính giá trị của biểu thức B khi x thỏa mãn \(|4x-2|=6\)
b)Rút gọn biểu thức A
c)Tìm x để P=\(\dfrac{2A}{B}>1\)
a)Vì |4x - 2| = 6 <=> 4x - 2 ϵ {6,-6} <=> x ϵ {2,-1}
Thay x = 2, ta có B không tồn tại
Thay x = -1, ta có B = \(\dfrac{1}{3}\)
b)ĐKXĐ:x ≠ 2,-2
Ta có \(A=\dfrac{5}{x+2}+\dfrac{3}{2-x}-\dfrac{15-x}{4-x^2}=\dfrac{10-5x+3x+6}{\left(x+2\right)\left(2-x\right)}-\dfrac{15-x}{4-x^2}=\dfrac{16-2x}{\left(x+2\right)\left(2-x\right)}-\dfrac{15-x}{4-x^2}=\dfrac{2x-16}{\left(x+2\right)\left(x-2\right)}-\dfrac{15-x}{4-x^2}=\dfrac{2x-16}{x^2-4}+\dfrac{15-x}{x^2-4}=\dfrac{x-1}{x^2-4}\)c)Từ câu b, ta có \(A=\dfrac{x-1}{x^2-4}\)\(\Rightarrow\dfrac{2A}{B}=\dfrac{\dfrac{\dfrac{2x-2}{x^2-4}}{2x+1}}{x^2-4}=\dfrac{2x-2}{2x+1}< 1\) với mọi x
Do đó không tồn tại x thỏa mãn đề bài
Tìm x nguyên để biểu thức nguyên A= \(\dfrac{x^2+4x+7}{x+4}\)
Ta có:
\(A=\dfrac{x^2+4x+7}{x+4}\)
\(A=\dfrac{x^2+4x}{x+4}+\dfrac{7}{x+4}\)
\(A=\dfrac{x\left(x+4\right)}{x+4}=\dfrac{7}{x+7}\)
\(A=x+\dfrac{7}{x+4}\)
Để A nguyên thì:
7 ⋮ \(x+4\)
\(\Rightarrow x+4\inƯ\left(7\right)\)
Mà: \(Ư\left(7\right)=\left\{1;-1;7;-7\right\}\)
\(\Rightarrow x\in\left\{-3;-5;3;-11\right\}\)
Vậy: ...
Để A là số nguyên thì x^2+4x+7 chia hết cho x+4
=>x+4 thuộc Ư(7)
=>x+4 thuộc {1;-1;7;-7}
=>x thuộc {-3;-5;3;-11}
BÀI 6
\(A=\dfrac{x+15}{x^2-9}-\dfrac{2}{x+3}\)
a) viết điều kiện xác định của biểu thức A
b)rút gọn phân thức
c)tìm giá trị của Akhi x=-1
BÀI 7
\(A=\dfrac{x+2}{x-2}+\dfrac{x-1}{x+2}\dfrac{x^2-4x}{4-x^2}\)với x2-4≠0
a)rút gọn biểu thức A
b)tính giá trị cua A khi x=4
a) ĐKXĐ:
\(\left\{{}\begin{matrix}x^2-9\ne0\\x+3\ne0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ne\pm3\\x\ne-3\end{matrix}\right.\Leftrightarrow x\ne\pm3\)
b) \(A=\dfrac{x+15}{x^2-9}-\dfrac{2}{x+3}\)
\(A=\dfrac{x+15}{\left(x+3\right)\left(x-3\right)}-\dfrac{2\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}\)
\(A=\dfrac{x+15-2x+6}{\left(x+3\right)\left(x-3\right)}\)
\(A=\dfrac{21-x}{\left(x+3\right)\left(x-3\right)}\)
c) Thay x = - 1 vào A ta có:
\(A=\dfrac{21-\left(-1\right)}{\left(-1+3\right)\left(-1-3\right)}=\dfrac{21+1}{2\cdot-4}=\dfrac{22}{-8}=-\dfrac{11}{4}\)
Mọi người giúp mình vs ạ. Mình đang cần gấp
Bài 1:Cho biểu thức A=\(\left(\dfrac{2}{1+2x}+\dfrac{4x^2+1}{4x^2-1}-\dfrac{1}{1-2x}\right):\dfrac{2}{4x^2-1}\)
a) Rút gọn biểu thức
b)Tính giá trị của A tại x=0; x=-3; x=\(\dfrac{1}{2}\)
c) Tìm x để A=2
Bài 2: Tìm giá trị nguyên thử của n để biểu thức B=\(\dfrac{2n^2+5n-1}{2n-1}\)có giá trị nguyên