Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Bùi Đức Anh
Xem chi tiết
Nguyễn Việt Lâm
15 tháng 12 2020 lúc 22:21

\(14^2=\left(a+2b+3c\right)^2\le\left(1+4+9\right)\left(a^2+b^2+c^2\right)\)

\(\Rightarrow a^2+b^2+c^2\ge14\)

Dấu "=" xảy ra khi và chỉ khi \(\left(a;b;c\right)=\left(1;2;3\right)\)

\(\Rightarrow M=\)

Nguyễn Thị Mỹ vân
Xem chi tiết
Hồng Phúc
27 tháng 8 2021 lúc 23:44

Giả sử \(c\le1\).

Khi đó: \(ab+bc+ca-abc=ab\left(1-c\right)+c\left(a+b\right)\ge0\)

\(\Rightarrow ab+bc+ca\ge abc\left(1\right)\)

Đẳng thức xảy ra chẳng hạn với \(a=2,b=c=0\).

Theo giả thiết:

\(4=a^2+b^2+c^2+abc\ge2ab+c^2+abc\)

\(\Leftrightarrow ab\left(c+2\right)\le4-c^2\)

\(\Leftrightarrow ab\le2-c\)

Trong ba số \(\left(a-1\right),\left(b-1\right),\left(c-1\right)\) luôn có hai số cùng dấu.

Không mất tính tổng quát, giả sử \(\left(a-1\right)\left(b-1\right)\ge0\).

\(\Rightarrow ab-a-b+1\ge0\)

\(\Leftrightarrow ab\ge a+b-1\)

\(\Leftrightarrow abc\ge ca+bc-c\)

\(\Rightarrow abc+2\ge ca+bc+2-c\ge ab+bc+ca\left(2\right)\)

Từ \(\left(1\right)\) và \(\left(2\right)\Rightarrow\) Bất đẳng thức được chứng minh.

 

trần vũ hoàng phúc
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 6 2023 lúc 20:39

=>2a^2+2b^2+2c^2-2ab-2bc-2ac>=0

=>(a-b)^2+(b-c)^2+(a-c)^2>=0(luôn đúng)

Nguyễn Hoàng Duy
8 tháng 6 2023 lúc 22:13

Xét hiệu a^2+b^2+c^2-ab-ac-bc=1/2.2(a^2+b^2+c^2-ab-ac-bc)

=1/2(2a^2+2b^2+2c^2-2ab-2ac-2bc)

=1/2[(a^2-2ab+b^2)+(a^2-2ac+c^2)+(b^2-2bc+c^2)]
=1/2.[(a-b)^2+(a-c)^2+(b-c)^2]

vì (a-b)^2+(a-c)^2+(b-c)^2>=0
nên 1/2.[(a-b)^2+(a-c)^2+(b-c)^2]>=0
hay a^2+b^2+c^2-ab-ac-bc >=0<=> a^2+b^2+c^2>=ab+ac+bc

nguyễn minh duy
Xem chi tiết
X Buồn X
Xem chi tiết
 Mashiro Shiina
24 tháng 5 2018 lúc 11:18

Khởi động nhẹ nhàng thôi:v

\(a^2+b^2+c^2\ge\dfrac{3}{4}\)

\(\Rightarrow a^2+b^2+c^2-a-b-c\ge\dfrac{3}{4}-\dfrac{3}{2}=-\dfrac{3}{4}\)

\(\Rightarrow\left(a^2-a+\dfrac{1}{4}\right)+\left(b^2-b+\dfrac{1}{4}\right)+\left(c^2-c+\dfrac{1}{4}\right)\ge0\)

\(\Rightarrow\left(a-\dfrac{1}{2}\right)^2+\left(b-\dfrac{1}{2}\right)^2+\left(c-\dfrac{1}{2}\right)^2\ge0\) (đúng)

\("="\Leftrightarrow a=b=c=\dfrac{1}{2}\)

Phùng Khánh Linh
24 tháng 5 2018 lúc 10:35

a) C1. Áp dụng BĐT : ( x - y)2 ≥ 0 ∀xy

Ta có : a2 + b2 ≥ 2ab ( 1)

b2 + c2 ≥ 2bc ( 2)

c2 + a2 ≥ 2ac ( 3)

Từ ( 1 ; 2 ; 3) ⇒ 2( a2 + b2 + c2) ≥ 2( ab + ab + ac)

⇔ 3( a2 + b2 + c2) ≥ ( a + b + c)2

⇔ a2 + b2 + c2\(\dfrac{\left(a+b+c\right)^2}{3}=\dfrac{9}{4}.\dfrac{1}{3}=\dfrac{3}{4}\)

Đẳng thức xảy ra khi và chỉ khi : a = b = c = \(\dfrac{1}{2}\)

C2. Áp dụng BĐT Bunhiacopxki , ta có :

( a2 + b2 + c2)( 12 + 12 + 12) ≥ ( a + b + c)2

⇔ a2 + b2 + c2 \(\dfrac{\left(a+b+c\right)^2}{3}=\dfrac{9}{4}.\dfrac{1}{3}=\dfrac{3}{4}\)

Đẳng thức xảy ra khi và chỉ khi : a = b = c = \(\dfrac{1}{2}\)

 Mashiro Shiina
24 tháng 5 2018 lúc 10:52

Lp 8 học Bunyakovsky :v Giỏi.

蝴蝶石蒜
Xem chi tiết
Yeutoanhoc
25 tháng 5 2021 lúc 14:19

Với mọi số thực ta luôn có:

`(a-b)^2>=0`

`<=>a^2-2ab+b^2>=0`

`<=>a^2+b^2>=2ab`

`<=>2(a^2+b^2)>=(a+b)^2=1`

`<=>a^2+b^2>=1/2(đpcm)`

Dấu "=' `<=>a=b=1/2`

bé đây thích chơi
25 tháng 5 2021 lúc 14:21

ta có:

(a²+b²)(1²+1²)≥(a.1+b.1)²

⇔ 2(a²+b²) ≥ (a+b)²

⇔ 2(a²+b²)≥ 1 (vì a+b=1)

⇔ a² +b² ≥ 1/2 (đpcm)

dấu "=) xảy ra khi a = b = 1/2

๖ۣۜDũ๖ۣۜN๖ۣۜG
Xem chi tiết
Nguyễn Việt Lâm
24 tháng 4 2021 lúc 21:37

- Nếu \(abc\ge0\Rightarrow a^2+b^2+c^2+abc\ge0\) dấu "=" xảy ra khi và chỉ khi \(a=b=c=0\)

- Nếu \(abc< 0\Rightarrow\)  trong 3 số a; b; c có ít nhất 1 số âm

Không mất tính tổng quát, giả sử \(c< 0\Rightarrow ab>0\)

Mà \(\left\{{}\begin{matrix}-2\le c< 0\\ab>0\end{matrix}\right.\Leftrightarrow abc\ge-2ab\)

\(\Rightarrow a^2+b^2+c^2+abc\ge a^2+b^2-2ab+c^2=\left(a-b\right)^2+c^2>0\) (không thỏa mãn)

Vậy \(a=b=c=0\)

PINK HELLO KITTY
Xem chi tiết
Đặng Gia Ân
Xem chi tiết
Phạm Ngọc Bích
17 tháng 1 2022 lúc 16:23
Ngu kkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
Khách vãng lai đã xóa