Tìm x,y biết
\(\dfrac{3x+2}{4}=\dfrac{2y+2}{5}=\dfrac{3x+2y+4}{4,5x}\left(x\ne0\right)\)
Gấp gấp bài này có 2 trường hợp nhá!!
Tìm x,y biết
\(\frac{x+y}{2014}=\frac{2y+2}{5}=\frac{3x+2y+4}{4,5x}\) \(\left(x\ne0\right)\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{3x+2}{4}=\frac{2y+2}{5}=\frac{3x+2y+4}{4,5x}=\frac{3x+2+2y+2}{4+5}=\frac{3x+2y+4}{9}\)
\(\Rightarrow4,5x=9\Rightarrow x=2\)
Mà \(\frac{3x+2}{4}=\frac{2y+2}{5}\)
\(\Rightarrow\frac{3.2+2}{4}=\frac{2y+2}{5}\Rightarrow\frac{2y+2}{5}=2\Rightarrow2y+2=10\Rightarrow y=4\)
giải hệ pt :
a, \(\left\{{}\begin{matrix}3xy+2y=5\\2xy\left(x+y\right)+y^2=5\end{matrix}\right.\)
b, \(\left\{{}\begin{matrix}\dfrac{1}{x}-\dfrac{1}{2y}=2\left(y^4-x^4\right)\\\dfrac{1}{x}+\dfrac{1}{2y}=\left(3y^2+x^2\right)\left(3x^2+y^2\right)\end{matrix}\right.\)
a.
Với \(y=0\) không phải nghiệm
Với \(y\ne0\Rightarrow\left\{{}\begin{matrix}3x+2=\dfrac{5}{y}\\2x\left(x+y\right)+y=\dfrac{5}{y}\end{matrix}\right.\)
\(\Rightarrow3x+2=2x\left(x+y\right)+y\)
\(\Leftrightarrow2x^2+\left(2y-3\right)x+y-2=0\)
\(\Delta=\left(2y-3\right)^2-8\left(y-2\right)=\left(2y-5\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{-2y+3+2y-5}{4}=-\dfrac{1}{2}\\x=\dfrac{-2y+3-2y+5}{4}=-y+2\end{matrix}\right.\)
Thế vào pt đầu ...
Câu b chắc chắn đề sai
cm đẳng thức\(a.\dfrac{x}{x+y}+\dfrac{4}{x^2+3xy+2y^2}+\dfrac{-3x}{x+2y}=\dfrac{-2x^2-xy+4}{\left(x+y\right)\left(x+2y\right)}\) với x ≠ -y; x ≠ -2y
b. \(\dfrac{x+y}{x-y}=\dfrac{x^2+2xy+y^2}{x^2-y^2}\)
\(a,VT=\dfrac{x^2+2xy+4-3x^2-3xy}{\left(x+y\right)\left(x+2y\right)}=\dfrac{-2x^2-xy+4}{\left(x+y\right)\left(x-2y\right)}=VP\\ b,VP=\dfrac{\left(x+y\right)^2}{\left(x-y\right)\left(x+y\right)}=\dfrac{x+y}{x-y}=VT\)
giải hệ pt :
\(\left\{{}\begin{matrix}\dfrac{1}{x}-\dfrac{1}{2y}=2\left(y^4-x^4\right)\\\dfrac{1}{x}+\dfrac{1}{2y}=\left(3y^2+x^2\right)\left(3x^2+y^2\right)\end{matrix}\right.\)
Đây chắc chắn là 1 hệ pt không giải được
Lần lượt lấy (trên + dưới) và lấy (dưới - trên) được 1 hệ mới, sau đó chia vế cho vế và đặt \(\dfrac{x}{y}=t\) sẽ đưa về 1 pt không thể phân tích thành nhân tử, đồng nghĩa không thể giải hệ đã cho
Tìm x, biết:
\(a,\dfrac{1}{3}:\left(2x-1\right)=\dfrac{-1}{6}\)
\(b,\left(3x+2\right)\left(\dfrac{-2}{5}x-7\right)=0\)
\(c,\dfrac{x}{8}=\dfrac{9}{4}\)
\(d,\dfrac{x-3}{2}=\dfrac{18}{x-3}\)
\(e,4,5x-6,2x=6,12\)
\(h,11,4-\left(x-3,4\right)=-16,2\)
a: =>2x-1=-2
=>2x=-1
hay x=-1/2
b: \(\Leftrightarrow\left[{}\begin{matrix}3x+2=0\\-\dfrac{2}{5}x-7=0\end{matrix}\right.\Leftrightarrow x\in\left\{-\dfrac{2}{3};-\dfrac{35}{2}\right\}\)
c: x/8=9/4
nên x/8=18/8
hay x=18
d: \(\Leftrightarrow\left(x-3\right)^2=36\)
=>x-3=6 hoặc x-3=-6
=>x=9 hoặc x=-3
e: =>-1,7x=6,12
hay x=-3,6
h: =>x-3,4=27,6
hay x=31
a) \(\dfrac{1}{3}\div\left(2x-1\right)=\dfrac{-1}{6}\)
\(\left(2x-1\right).\dfrac{1}{3}\div\left(2x-1\right)=\left(2x-1\right)\left(-\dfrac{1}{6}\right)\)
\(\dfrac{1}{3}=\left(2x-1\right)\left(-\dfrac{1}{6}\right)\)
\(\dfrac{1}{3}=-1\left(2x-1\right)\div6\)
\(\dfrac{1}{3}=-2x+1\div6\)
\(x=-\dfrac{1}{2}\)
b) \(\left(3x+2\right)\left(\dfrac{-2}{5}x-7\right)=0\)
\(TH1:3x+2=0\)
\(3x=0-2\)
\(3x=-2\)
\(x=\dfrac{-2}{3}\)
\(TH2:\left(-\dfrac{2}{5}x-7\right)=0\)
\(\left(\dfrac{-2}{5}x-7\right)=0\)
\(\left(\dfrac{-2x}{5}+\dfrac{5\left(-7\right)}{5}\right)=0\)
\(\left(\dfrac{-2x-35}{5}\right)=0\)
\(-2x-35=0\)
\(-2x=0+35\)
\(x=-\dfrac{35}{2}\)
c) \(\dfrac{x}{8}=\dfrac{9}{4}\)
\(\Leftrightarrow x=\dfrac{9.8}{4}=\dfrac{72}{4}=18\)
\(x=18\)
d) \(\dfrac{x-3}{2}=\dfrac{18}{x-3}\)
\(x-3=18+2\)
\(x=20-3\)
\(x=17\)
e) \(4,5x-6,2x=6,12\)
\(\dfrac{9x}{2}-6,2.x=6,12\)
\(\dfrac{9x}{2}+\dfrac{-31x}{5}=6,12\)
\(\dfrac{5.9x}{10}+\dfrac{2\left(-31\right)x}{10}=6.12\)
\(\dfrac{45x-62x}{10}=6.12\)
\(=-17x\div10=6.12\)
\(-17x=10.6.12\)
\(x=-3,6\)
h) \(11,4-\left(x-3,4\right)=-16,2\)
\(x-3,4=-16,2+11,4\)
\(x-3,4=-4,8\)
\(x=-1,4\)
Biết rằng: \(\dfrac{x+3y}{x-2y}=\dfrac{4}{3},\left(x-2y\ne0\right)\). Khi đó \(\dfrac{x}{y}\left(y\ne0\right)\) bằng:
\(\Leftrightarrow3x+9y=4x-8y\)
\(\Leftrightarrow x=17y\)
hay \(\dfrac{x}{y}=\dfrac{17}{1}\)
\(\Leftrightarrow3\left(x+3y\right)=4\left(x-2y\right)\\ \Leftrightarrow3x+9y=4x-8y\\ \Leftrightarrow x=17y\Leftrightarrow\dfrac{x}{y}=17\)
\(\dfrac{3x+2}{4}\) =\(\dfrac{2y+2}{5}\)=\(\dfrac{3x+2y+4}{4,5x}\)
\(\dfrac{3x+2}{4}=\dfrac{2y+2}{5}\)\(=\dfrac{3x+2y+4}{4,5x}\)
= \(\dfrac{3x+2+2y+2-\left(3x+2y+4\right)}{4+5-4,5x}\)
= \(\dfrac{3x+2+2y+2-3x-2y-4}{4+5-4,5x}\)
= \(\dfrac{0}{9-4,5x}\) = 0
Giải tiếp cho bạn Nguyễn Linh nhé :
\(\Rightarrow\left\{{}\begin{matrix}3x+2=0\cdot4=0\\2y+2=0\cdot5=0\end{matrix}\right.\)
\(\Rightarrow3x+2=2y+2\)
\(\Rightarrow3x=2y\)
\(\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}\) . Từ đây bạn áp dụng điều kiện thứ 2 của đề bài để tính x và y nhé
Tìm x,y biết:
a) \(-\dfrac{1}{2}\left(3-2x\right)-7=5-\dfrac{1}{3}\left(x-\dfrac{4}{5}\right)\)
b)\(\left(5-\dfrac{3x}{2}\right):-1\dfrac{3}{8}=-7\dfrac{1}{3}\)
c)\(\left(2+3x\right)^2+\left|3x+2y\right|=0\)
a: =>-3/2+x-7=5-1/3x+4/15
=>4/3x=413/30
hay x=413/40
b: \(\Leftrightarrow5-\dfrac{3}{2}x=-\dfrac{22}{3}\cdot\dfrac{-11}{8}=\dfrac{121}{12}\)
=>3/2x=-61/12
hay x=-61/18
c: (3x+2)2+|3x+2y|=0
=>3x+2=0 và 3x=-2y
=>x=-2/3 và -2y=-2
=>(x,y)=(-2/3;1)
\(\left(x+\dfrac{1}{4}\right)^2\)
\(\left(3x^2-2y\right)^3\)
\(\left(\dfrac{2}{3}x^2-\dfrac{1}{2}y\right)^3\)
`(x+1/4)^2=x^2+1/2 x + 1/16`
`(3x^2-2y)^3=27x^6-54x^4y+36x^2y^2-8y^3`
`(2/3 x^2 -1/2 y)^3=8/27 x^6 - 2/3 x^4y+1/2 x^2y^2 - 1/8 y^3`