Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
trần thảo lê
Xem chi tiết
Eren
31 tháng 3 2017 lúc 21:49

\(\dfrac{2006x}{xy+2006x+2006}+\dfrac{y}{yz+y+2006}+\dfrac{z}{xz+z+1}\)

\(=\dfrac{x^2yz}{xy+x^2yz+xyz}+\dfrac{y}{yz+y+xyz}+\dfrac{z}{xz+z+1}\)

\(=\dfrac{x^2yz}{xy\left(1+xz+z\right)}+\dfrac{y}{y\left(xz+z+1\right)}+\dfrac{z}{xz+z+1}\)

\(=\dfrac{xz}{xz+z+1}+\dfrac{1}{xz+z+1}+\dfrac{z}{xz+z+1}=\dfrac{xz+z+1}{xz+z+1}=1\)

Đỗ Nguyễn Phương Thảo
31 tháng 3 2017 lúc 21:50

Ta có: \(\dfrac{2006x}{xy+2006x+2006}+\dfrac{y}{yz+y+2006}+\dfrac{z}{xz+z+1}=1\)

\(\Leftrightarrow\dfrac{x^2yz}{xy+x^2yz+xyz}+\dfrac{y}{yz+y+xyz}+\dfrac{z}{xz+x+1}\)

\(\Leftrightarrow\dfrac{x^2yz}{xy\left(1+xz+z\right)}+\dfrac{y}{y\left(z+1+xz\right)}+\dfrac{z}{xz+x+1}\)

\(\Leftrightarrow\dfrac{xz}{1+xz+z}+\dfrac{1}{z+1+xz}+\dfrac{z}{xz+x+1}\)

\(\Leftrightarrow\dfrac{xz+1+z}{1+xz+z}=1\left(đpcm\right)\)

_Chúc bạn học tốt_

nguyễn thị như hoa
Xem chi tiết
lương thị hạnh
Xem chi tiết
Kaylee Trương
Xem chi tiết
Minh Hiền
11 tháng 12 2015 lúc 10:41

Ta có: xyz=2006

Đặt tổng (đề) trên là A ( phân số thứ nhất tử là 2006x nhé)

=> \(A=\frac{xyzx}{xy+xyzx+xyz}+\frac{y}{yz+y+xyz}+\frac{z}{xz+z+1}\)

\(=\frac{x^2yz}{xy\left(1+xz+z\right)}+\frac{y}{y\left(z+1+xz\right)}+\frac{z}{xz+z+1}\)

\(=\frac{xz}{xz+z+1}+\frac{1}{xz+z+1}+\frac{z}{xz+z+1}=\frac{xz+1+z}{xz+z+1}=1\)

=> A = 1 (đpcm).

 

Lê Trung Kiên
Xem chi tiết
đặng anh thơ
Xem chi tiết
Trịnh Thanh Mai
9 tháng 3 2015 lúc 21:52

Thay 2006=xyz

Ta có : 

\(\frac{xyz.x}{xy+xyz.x+xyz}+\frac{y}{yz+y+xyz}+\frac{z}{zx+z+1}\)

\(=>\frac{x^2yz}{xy\left(zx+z+1\right)}+\frac{y}{y\left(zx+z+1\right)}+\frac{z}{zx+x+1}\)

=> \(\frac{xz}{zx+z+1}+\frac{1}{zx+z+1}+\frac{z}{zx+x+1}\)= 1(điều phải chứng minh)

 

Bùi Minh Anh
26 tháng 11 2017 lúc 20:47

Ta có: \(A=\frac{2006x}{xy+2006x+2006}+\frac{y}{yz+y+2006}\) \(+\frac{z}{zx+z+1}\)

\(=\frac{2006xz}{xyz+2006zx+2006z}+\frac{y}{yz+y+xyz}\) \(+\frac{z}{zx+z+1}\)

\(=\frac{2016xz}{2016\left(1+zx+z\right)}+\frac{y}{y\left(z+1+xz\right)}\) \(+\frac{z}{zx+z+1}\)

\(=\frac{xz}{xz+z+1}+\frac{1}{xz+z+1}+\frac{z}{xz+z+1}\) \(=\frac{xz+z+1}{xz+z+1}=1\)

=> đpcm

Pose Black
Xem chi tiết
Nguyễn Việt Lâm
26 tháng 12 2022 lúc 19:59

\(A=\dfrac{x}{xy+x+1}+\dfrac{xy}{x.yz+xy+x}+\dfrac{xy.z}{xy.xz+xy.z+xy}\)

\(=\dfrac{x}{xy+x+1}+\dfrac{xy}{1+xy+x}+\dfrac{1}{x+1+xy}\)

\(=\dfrac{x+xy+1}{xy+x+1}=1\)

 

Phạm Nguyễn Tất Đạt
Xem chi tiết
Phạm Nguyễn Tất Đạt
12 tháng 9 2017 lúc 20:48
piojoi
Xem chi tiết
Thuỳ Linh Nguyễn
2 tháng 8 2023 lúc 11:50

Có `xyz=2023=>2023=xyz` 

Thay vào ta có :

\(\dfrac{xyz\cdot x}{xy+xyz\cdot x+xyz}+\dfrac{y}{yz+y+xyz}+\dfrac{z}{xz+z+1}=1\\ \dfrac{x^2yz}{xy\left(1+xz+z\right)}+\dfrac{y}{y\left(z+1+xz\right)}+\dfrac{z}{xz+z+1}=1\\ \dfrac{xz}{1+xz+z}+\dfrac{1}{z+1+xz}+\dfrac{z}{xz+z+1}=1\\ \dfrac{xz+1+z}{1+xz+z}=1\left(dpcm\right)\)