Rút gọn phân thức:
A=x/xy-y^2+2x-y/xy-x^2:1/x+1/y
Bài 1: Rút gọn các phân thức sau:
a) \(\dfrac{x^3-1}{x^2+x+1}\)
b) \(\dfrac{x^2+2xy+y^2}{2x^2+xy-y^2}\)
c) \(\dfrac{ax^4-a^4x}{a^2+ax+x^2}\)
d) \(\dfrac{x^3+x^2-6x}{x^3-4x}\)
e) \(\dfrac{2x^2+xy-y^2}{2x^2-3xy+y^2}\)
Mng giúp e với ạ.E đg cần gấp có trc trưa mai đc ko ạ:)))
E cảm ơn ạ!!!
a) \(\dfrac{x^3-1}{x^2+x+1}=\dfrac{\left(x-1\right)\left(x^2+x+1\right)}{x^2+x+1}=x-1\)
b) \(\dfrac{x^2+2xy+y^2}{2x^2+xy-y^2}\)
\(=\dfrac{\left(x+y\right)^2}{x^2+xy+x^2-y^2}=\dfrac{\left(x+y\right)^2}{x\left(x+y\right)+\left(x-y\right)\left(x+y\right)}\)
\(=\dfrac{\left(x+y\right)^2}{\left(2x-y\right)\left(x+y\right)}=\dfrac{x+y}{\left(2x-y\right)}\)
c) \(\dfrac{ax^4-a^4x}{a^2+ax+x^2}\)
\(=\dfrac{ax\left(x^3-a^3\right)}{a^2+ax+x^2}\)
\(=\dfrac{ax\left(x-a\right)\left(a^2+ax+x^2\right)}{a^2+ax+x^2}\)
\(=ax\left(x-a\right)\)
Rút gọn các phân thức sau:
b) x^3-x^2y+xy^2/x^3+y^3
c) (2x^2+2x)(x-2)^2/(x^3-4x)(x+1)
\(b,=\dfrac{x\left(x^2-xy+y^2\right)}{\left(x+y\right)\left(x^2-xy+y^2\right)}=\dfrac{x}{x+y}\left(x\ne-y\right)\\ c,=\dfrac{2x\left(x+1\right)\left(x-2\right)^2}{x\left(x-2\right)\left(x+2\right)\left(x+1\right)}=\dfrac{2\left(x-2\right)}{x+2}\left(x\ne-1;x\ne\pm2;x\ne0\right)\)
b: \(\dfrac{x^3-x^2y+xy^2}{x^3+y^3}=\dfrac{x\left(x^2-xy+y^2\right)}{\left(x+y\right)\left(x^2-xy+y^2\right)}=\dfrac{x}{x+y}\)
c: \(\dfrac{\left(2x^2+2x\right)\left(x-2\right)^2}{\left(x^3-4x\right)\left(x+1\right)}=\dfrac{2x\left(x+1\right)\left(x-2\right)^2}{x\left(x-2\right)\left(x+2\right)\left(x+1\right)}=\dfrac{2\left(x-2\right)}{x+2}\)
Rút gọn biểu thức sau: (xy+ 2x-y-2)/(xy-x-y+1)
\(\frac{xy+2x-y-2}{xy-x-y+1}=\frac{\left(xy-y\right)+\left(2x-2\right)}{\left(xy-y\right)+\left(1-x\right)}\)
\(=\frac{\left(x-1\right)\left(y+2\right)}{\left(x-1\right)\left(y-1\right)}=\frac{y+2}{y-1}\)
\(\frac{\left(xy-y\right)+\left(2x-2\right)}{\left(xy-y\right)-\left(x-1\right)}=\frac{y\left(x-1\right)+2\left(x-1\right)}{y\left(x-1\right)-\left(x-1\right)}=\frac{\left(x-1\right)\left(y+2\right)}{\left(x-1\right)\left(y-1\right)}=\frac{y+2}{y-1}\)
Rút gọn các phân thức sau:
a) \(\dfrac{6x^2y^2}{8xy^{ }5}\)
b) \(\dfrac{10xy^2\left(x+y\right)}{15xy\left(x+y\right)^3}\)
c) \(\dfrac{2x^2+2x
}{x+1}\)
d) \(\dfrac{x^2-xy-x+y}{x^2+xy-x-y}\)
e) \(\dfrac{36\left(x-2\right)^3}{32-16x}\)
a) \(\dfrac{6x^2y^2}{8xy^5}=\dfrac{3x}{4y^3}\)
b) \(=\dfrac{2y}{3\left(x+y\right)^2}=\dfrac{2y}{3x^2+6xy+3y^2}\)
c) \(=\dfrac{2x\left(x+1\right)}{x+1}=2x\)
d) \(=\dfrac{x\left(x-y\right)-\left(x-y\right)}{x\left(x+y\right)-\left(x+y\right)}=\dfrac{\left(x-y\right)\left(x-1\right)}{\left(x+y\right)\left(x-1\right)}=\dfrac{x-y}{x+y}\)
e) \(=\dfrac{36\left(x-2\right)^3}{-16\left(x-2\right)}=-9\left(x-2\right)^2=-9x^2+36x-36\)
Bài 1: Rút gọn rồi tính giá trị biểu thức.
a) A= 5x( 4x² - 2x + 1) - 2x(10x² - 5x - 2) với x= 15
b) B= 5x(x-4y) - 4y( y - 5x ) với x=-1/5; y= -(1/2)
c) C= 6xy ( xy - y² ) - 8x² ( x - y²) - 5y² ( x² - xy) với x= 1/2; y=2
d) D= ( 3x + 5 ) ( 2x - 1 ) + (4x-1).(3x+2) với |x|= 2
Thks mng ạ :3
a/ \(A=20x^3-10x^2+5x-20x^3+10x^2+4x=9x\)
Thay x = 15 vào bt A ta có
A = 9 . 15 = 135
b/ \(B=5x^2-20xy-4y^2+2xy=5x^2-4y^2\)
Thay x = -1/5 ; y = - 1/2 vào bt B ta có
\(B=5.\dfrac{1}{25}-4.\dfrac{1}{4}=\dfrac{1}{5}-1=-\dfrac{4}{5}\)
c/ \(C=6x^2y^2-6xy^3-8x^3+8x^2y^2-5x^2y^2+5xy^3\)
\(=9x^2y^2-xy^3-8x^3\)
Thay x = 1/2 ; y = 2 vào bt C ta có
\(C=9.4.\dfrac{1}{4}-\dfrac{1}{2}.8-8.\dfrac{1}{8}=9-4-1=4\)
d/ \(D=6x^2+10x-3x-5+6x^2-3x+8x-2\)
\(=12x^2+12x-3\)
\(\left|x\right|=2\Rightarrow x=\pm2\)
Thay x = 2 vào bt D có
\(D=12.4+12.2-3=69\)
Thay x = - 2 vào bt D ta có
\(D=12.4-12.2-3=21\)
Bài 1 rút gọn biểu thức sau A,xy.(2x²-3)-x²(5xy+y)+x²y B,3xyz.(y-2)-5yz(1-y)-8z.(y²-3)
\(A,xy\left(2x^2-3\right)-x^2\left(5xy+y\right)+x^2y\\ =2x^3y-3xy-5x^3y-x^2y+x^2y\\ =\left(2x^3y-5x^3y\right)+\left(-x^2y+x^2y\right)-3xy\\ =-3x^3y-3xy\)
\(B,3xyz\left(y-2\right)-5yz\left(1-y\right)-8z\left(y^2-3\right)\\ =3xy^2z-6xyz-5yz+5y^2z-8y^2z+24z\\ =3xy^2z-6xyz+\left(5y^2z-8y^2z\right)-5yz+24z\\ =3xy^2z-6xyz-3y^2z-5yz+24z\)
1) rút gọn biểu thức : A= \(\dfrac{2x}{x^2+xy}\)+\(\dfrac{6x}{x^2-y^2}\)+\(\dfrac{3}{y-x}\) với x khác 0 , x khác y , x khác -y
\(A=\dfrac{2x}{x\left(x+y\right)}+\dfrac{6x}{\left(x-y\right)\left(x+y\right)}-\dfrac{3}{x-y}\)
\(=\dfrac{2\left(x-y\right)}{\left(x-y\right)\left(x+y\right)}+\dfrac{6x}{\left(x-y\right)\left(x+y\right)}-\dfrac{3\left(x+y\right)}{\left(x+y\right)\left(x-y\right)}\)
\(=\dfrac{2x-2y+6x-3x-3y}{\left(x-y\right)\left(x+y\right)}=\dfrac{5\left(x-y\right)}{\left(x-y\right)\left(x+y\right)}\)
\(=\dfrac{5}{x+y}\)
Các bạn giúp mình với mình cần gấp ạ.
Bài 1: Rút gọn biểu thức
1) x(xy+1)+y(xy-1)-xy(x+y)
2) -x(x2—x+1) + 1/2x2(2x-4)+x(x+1)-2
3) (x2+xy+y2)(-2xy)+xy(x2-xy+y2)
a) \(x\left(xy+1\right)+y\left(xy-1\right)-xy\left(x+y\right)\)
\(=X^2y+x+xy^2-y-x^2y-xy^2\)
\(=x-y\)
a, \(x\left(xy+1\right)+y\left(xy-1\right)-xy\left(x+y\right)\)
\(=x^2y+x+xy^2-y-x^2y-xy^2\)
\(=x-y\)
b, \(-x\left(x^2+x+1\right)+\frac{1}{2}x^2\left(2x-4\right)+x\left(x+1\right)-2\)
\(=-x^3-x^2-x+x^3-2x^2+x^2+x-2\)
\(=-2x^2-2\)
* Tìm x: 3x(2x-4)-(6x-1)(x+2)=25
* Rút gọn phân thức: ( x^2 - 2xy + y^2 )(x-y) - (x-y)(x^2 + xy + y^2)
a) Ta có: \(3x\left(2x-4\right)-\left(6x-1\right)\left(x+2\right)=25\)
\(\Rightarrow6x^2-12x-\left(6x^2+12x-x-2\right)=25\)
\(\Rightarrow6x^2-12x-6x^2-12x+x+2=25\)
\(\Rightarrow-23x+2=25\)
\(\Rightarrow-23x=25-2-23\)
\(\Rightarrow x=23:\left(-23\right)=-1\)
Vậy x = -1
b) \(\left(x^2-2xy+y^2\right)\left(x-y\right)-\left(x-y\right)\left(x^2+2xy+y^2\right)\)
\(=\left(x-y\right)\left(x^2-2xy+y^2-x^2+2xy+y^2\right)\)
\(=\left(x-y\right)2x^2\)
rút gọn biểu thức rồi tính giá trị biểu thức:
a)A=(2x+3y)(x2-xy+1)-x2(2x-y)-3x tại x=-1;y=2
b)B=2xy.(1/4x2-3y)+5y(xy-x3+1) tại x=1;y=1/2