a , (-1/2)7.37
b , (0,125)3.512
c , 902/152
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Bài 1: Tính:
\(a,\left(0,25\right)^3.32\) \(b,\left(0,125\right)^3.512\) \(c,\dfrac{8^2.4^5}{2^{20}}\) \(d,\dfrac{81^{11}.3^{17}}{27^{10}.9^{15}}\)
Bài 2: Tìm giá trị nhỏ nhất của các biểu thức sau:
\(a,A=\left|x-\dfrac{3}{4}\right|\) \(b,B=1,5+\left|2-x\right|\) \(c,A=\left|2x-\dfrac{1}{3}\right|+107\) \(d,M=5\left|1-4x\right|-1\)
Bài 3: Tìm giá trị lớn nhất của biểu thức sau:
\(a,C=-\left|x-2\right|\) \(b,D=1-\left|2x-3\right|\) \(c,D=-\left|x+\dfrac{5}{2}\right|\)
(mn giải giúp mk với, thanks mn nhìu!)
\(1,\\ a,=\left(\dfrac{1}{4}\right)^3\cdot32=\dfrac{1}{64}\cdot32=\dfrac{1}{2}\\ b,=\left(\dfrac{1}{8}\right)^3\cdot512=\dfrac{1}{512}\cdot512=1\\ c,=\dfrac{2^6\cdot2^{10}}{2^{20}}=\dfrac{1}{2^4}=\dfrac{1}{16}\\ d,=\dfrac{3^{44}\cdot3^{17}}{3^{30}\cdot3^{30}}=3\\ 2,\\ a,A=\left|x-\dfrac{3}{4}\right|\ge0\\ A_{min}=0\Leftrightarrow x=\dfrac{3}{4}\\ b,B=1,5+\left|2-x\right|\ge1,5\\ A_{min}=1,5\Leftrightarrow x=2\\ c,A=\left|2x-\dfrac{1}{3}\right|+107\ge107\\ A_{min}=107\Leftrightarrow2x=\dfrac{1}{3}\Leftrightarrow x=\dfrac{1}{6}\)
\(d,M=5\left|1-4x\right|-1\ge-1\\ M_{min}=-1\Leftrightarrow4x=1\Leftrightarrow x=\dfrac{1}{4}\\ 3,\\ a,C=-\left|x-2\right|\le0\\ C_{max}=0\Leftrightarrow x=2\\ b,D=1-\left|2x-3\right|\le1\\ D_{max}=1\Leftrightarrow x=\dfrac{3}{2}\\ c,D=-\left|x+\dfrac{5}{2}\right|\le0\\ D_{max}=0\Leftrightarrow x=-\dfrac{5}{2}\)
Tính: (0,125)3.512
(0,125)3.512 = 0,1253.83 = (0,125.8)3 = 13 = 1
Viết các biểu thức sau dưới dạng lũy thừa của một số hữu tỉ:
a) (0,125)3.512
\(0,125^3.512\)
=\(\left(\dfrac{1}{8}\right)^3.8^3\)
= \(\dfrac{1}{8^3}.8^3\)
=\(6^3\)
(0,125)3. 512
= (0,125)3. 83
= (0,125.8)3
= 13
= \(\left(\dfrac{1}{1^{ }}\right)^3\)
tính
a) \(\left(\dfrac{1}{5}\right)^5.5^5\)
b) \(\left(0,125\right)^3.512\)
c) \(\left(0,25\right)^4.1024\)
a/ \(\left(\dfrac{1}{5}\right)^5.5^5=\left(\dfrac{1}{5}.5\right)^5=1^5=1\)
b/ \(\left(0,125\right)^3.512=\left(0,125\right).8^3=\left(0,125.8\right)^3=1^3=1\)
c/ \(\left(0,25\right)^4.1024=\left(0,25^2\right)^2.32^2=\left(\dfrac{1}{6}\right)^2.32^2=\left(\dfrac{1}{6}.32\right)^2=16^2\)
\(a,\left(\dfrac{1}{5}\right)^5.5^5=\left(\dfrac{1}{5}.5\right)^5=1^5=1\)
\(b,\left(0,125\right)^3.512=\left(0,125\right)^3.8^3=\left(0,125.8\right)^3=1^3=1\)
\(c,\left(0,25\right)^4.1024=\left(0,25\right)^4.4^4.4=\left(0,25.4\right)^4.4=1^4.4=1.4=4\)
Tính :
a) \(\left(\dfrac{1}{5}\right)^5.5^5\)
b) \(\left(0,125\right)^3.512\)
c) \(\left(0,25\right)^4.1024\)
a) \(\left(\dfrac{1}{5}\right)^5.5^5=1\)
b) \(\left(0,125\right)^3.512=1\)
c) \(\left(0,25\right)^4.1024=4\)
a) (1/5)^5 . 5^5 = (1/5. 5)^5 = 1^5= 1
b) (0,125)^3. 512= (0,125)^3 . 8^3 = (0,125. 8)^3 = 1^3= 1
c) (0,25)^4. 1024= [(0,25)^2]^2. 32^2= (1/6)^2. 32^2=(1/6.32)^2= (32/6)^2 =2^2= 4
a, \(\left(\dfrac{1}{5}\right)^5.5^5\) =0,00032. 3125= 1
b, \(\left(0,125\right)^3.512\)= 0.001953125. 512=1
c, \(\left(0,25\right)^4.1024\) =0,00390625.1024=4
Tính hợp lý :
0,125^3.512
0, 1253 . 512 = 0, 1253 . 83 = (0,125 .8 )3 =13 = 1.
Bài 50. Tính :
a)\(\left(\dfrac{1}{5}\right)^5.5^5\);
b)\(\left(0,125\right)^3.512\);
c)\(\left(0,25\right)^4.1024\).
a) \(\left(\dfrac{1}{5}\right)^5.5^5\)
\(=\dfrac{1}{3125}.3125\)
= 1
b) \(\left(0,125\right)^3.512\)
\(=\dfrac{1}{512}.512\)
= 1
c) \(\left(0,25\right)^4.1024\)
= \(\dfrac{1}{256}.1024\)
= 4
50.
a) \(\left(\dfrac{1}{5}\right)^5.5^5\)
\(=\left(5^{-1}\right)^5.5^5=5^{-5}.5^5=5^{-5+5}=5^0=1\)
Tính
a) \(\left(\frac{3}{7}\right)^{21}:\left(\frac{9}{49}\right)^6\)
b) \(\left(0,125\right)^3.512\)
c) \(\left(0,25\right)^4.1024\)
a, \(25^3:5^2\)
b, \(\frac{390^4}{130^4}\)
c, \(32^4:4^3\)
d,\(\left(0,125\right)^3.512\)
e, \(\left(0,25\right)^4.1024\)
\(a,25^3:5^2=5^{2^3}:5^2=5^6:5^2=5^4=625\)
\(b,\frac{390^4}{130^4}=\left(\frac{390}{130}\right)^4=3^4=81\)
\(c,32^4:4^3=2^{5^4}:2^{2^3}=2^{20}:2^6=2^{14}\)
Tính:
a) \(\left(\dfrac{1}{5}\right)^5\)
b) \(\left(0,125\right)^3.512\)
c) \(\left(0,25\right)^4.1024\)
d) \(\dfrac{120^3}{40^3}\)
e) \(\dfrac{390^4}{130^4}\)
f) \(\dfrac{3^2}{\left(0,375\right)^2}\)
a) \(\left(\dfrac{1}{5}\right)^5.5^5=\left(\dfrac{1}{5}.5\right)^5=1^5=1\)
b) \(\left(0,125\right)^3.512=\left(0,512\right)^3.8^3=\left(0,512.8\right)^3=1^3=1\)
c) \(\left(0,25\right)^4.1024=\left[\left(0,25\right)^2\right]^2.32^2=\left(\dfrac{1}{6}\right)^2.32^2=\left(\dfrac{1}{6}.32\right)^2=2^2=4\)
d) \(\dfrac{120^3}{40^3}=\left(\dfrac{120}{40}\right)^3=3^3=64\)
e) \(\dfrac{390^4}{130^4}=\left(\dfrac{390}{130}\right)^4=3^4=81\)
g) \(\dfrac{3^2}{\left(0,375\right)^2}=\left(\dfrac{3}{0,375}\right)^3=8^3=512\)