Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Sarah
Xem chi tiết
Yeutoanhoc
25 tháng 2 2021 lúc 17:05

`a,ĐKXĐ:x-4 ne 0,2x+2 ne 0`

`<=>x ne 4,x me -1`

`b,ĐKXĐ:4x^2-25 ne 0`

`<=>(2x-5)(2x+5) ne 0`

`<=>x ne +-5/2`

`c,ĐKXĐ:8x^3+27 ne 0`

`<=>8x^3 ne -27`

`<=>2x ne -3`

`<=>x ne -3/2`

`d,2x+2 ne 0,4y^2-9 ne 0`

`<=>2x ne -2,(2y-3)(2y+3) ne 0`

`<=>x ne -1,y ne +-3/2`

Nguyễn Lê Phước Thịnh
25 tháng 2 2021 lúc 22:47

b) ĐKXĐ: \(x\notin\left\{\dfrac{5}{2};-\dfrac{5}{2}\right\}\)

c) ĐKXĐ: \(x\ne-\dfrac{3}{2}\)

d) ĐKXĐ: \(\left\{{}\begin{matrix}x\ne-1\\y\notin\left\{\dfrac{3}{2};-\dfrac{3}{2}\right\}\end{matrix}\right.\)

Mun Tổng
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 2 2021 lúc 20:37

a) ĐKXĐ: \(x\notin\left\{0;-5\right\}\)

b) Ta có: \(B=\dfrac{x^2+2x}{2x+10}+\dfrac{x-5}{x}+\dfrac{50-5x}{2x\left(x+5\right)}\)

\(=\dfrac{x\left(x^2+2x\right)}{2x\left(x+5\right)}+\dfrac{2\left(x+5\right)\left(x-5\right)}{2x\left(x+5\right)}+\dfrac{50-5x}{2x\left(x+5\right)}\)

\(=\dfrac{x^3+2x^2+2\left(x^2-25\right)+50-5x}{2x\left(x+5\right)}\)

\(=\dfrac{x^3+2x^2+2x^2-50+50-5x}{2x\left(x+5\right)}\)

\(=\dfrac{x^3+4x^2-5x}{2x\left(x+5\right)}\)

\(=\dfrac{x\left(x^2+4x-5\right)}{2x\left(x+5\right)}\)

\(=\dfrac{x^2+4x-5}{2\left(x+5\right)}\)

\(=\dfrac{x^2+5x-x-5}{2\left(x+5\right)}\)

\(=\dfrac{x\left(x+5\right)-\left(x+5\right)}{2\left(x+5\right)}\)

\(=\dfrac{\left(x+5\right)\left(x-1\right)}{2\left(x+5\right)}\)

\(=\dfrac{x-1}{2}\)

Để B=0 thì \(\dfrac{x-1}{2}=0\)

\(\Leftrightarrow x-1=0\)

hay x=1(nhận)

Để \(B=\dfrac{1}{4}\) thì \(\dfrac{x-1}{2}=\dfrac{1}{4}\)

\(\Leftrightarrow x-1=\dfrac{1}{2}\)

hay \(x=\dfrac{3}{2}\)(nhận)

Vậy: Để B=0 thì x=1 và Để \(B=\dfrac{1}{4}\) thì \(x=\dfrac{3}{2}\)

dam quoc phú
Xem chi tiết
Nguyễn Phúc Trường An
Xem chi tiết
YangSu
9 tháng 4 2022 lúc 11:23

+ Pt thứ nhất :

Ta có mẫu thức chung là : \(2\left(x-3\right)\left(x+1\right)\)

\(\Rightarrow\left[{}\begin{matrix}x\ne2\\x-3\ne0\\x+1\ne0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x\ne2\\x\ne3\\x\ne-1\end{matrix}\right.\)

Vậy \(ĐKXĐ\) là :\(x\ne2;3;-1\)

+ Pt thứ hai : 

Ta có mẫu thức chung là : \(\left(x-2\right)\left(x+3\right)\)

\(\Rightarrow\left[{}\begin{matrix}x-2\ne0\\x+3\ne0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x\ne2\\x\ne-3\end{matrix}\right.\)

Vậy \(DKXD:\) \(\) \(x\ne2;-3\)

 

 
Dương Thanh Nam
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 1 2023 lúc 19:24

a: ĐKXĐ: x<>2; x<>-2; x<>0; x<>3

b: \(P=\left(\dfrac{-\left(x+2\right)}{x-2}+\dfrac{4x^2}{\left(x-2\right)\left(x+2\right)}+\dfrac{x-2}{x+2}\right)\cdot\dfrac{x^2\left(2-x\right)}{x\left(x-3\right)}\)

\(=\dfrac{-x^2-4x-4+4x^2+x^2-4x+4}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{-x\left(x-2\right)}{x-3}\)

\(=\dfrac{4x^2-8x}{\left(x+2\right)}\cdot\dfrac{-x}{\left(x-3\right)}=\dfrac{-4x^2\left(x-2\right)}{\left(x+2\right)\left(x-3\right)}\)

c: 2(x-1)=6

=>x-1=3

=>x=4

Thay x=4 vào P, ta đc:

\(P=\dfrac{-4\cdot4^2\cdot\left(4-2\right)}{\left(4+2\right)\left(4-3\right)}=\dfrac{-64\cdot2}{6}=\dfrac{-128}{6}=-\dfrac{64}{3}\)

Nữ hoàng sến súa là ta
Xem chi tiết
Trần Thanh Phương
3 tháng 1 2019 lúc 17:01

a) Phân thức B xác định \(\Leftrightarrow\hept{\begin{cases}2x-2\ne0\\x^2-1\ne0\\2x+2\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne1\\x\ne\left\{\pm1\right\}\\x\ne-1\end{cases}\Leftrightarrow}x\ne\left\{\pm1\right\}}\)

b) \(B=\left(\frac{x+1}{2x-2}+\frac{3}{x^2-1}-\frac{x+3}{2x+2}\right)\cdot\frac{4x^2-4}{5}\)

\(B=\left[\frac{\left(x+1\right)^2}{2\left(x-1\right)\left(x+1\right)}+\frac{3\cdot2}{2\left(x-1\right)\left(x+1\right)}-\frac{\left(x+3\right)\left(x-1\right)}{2\left(x-1\right)\left(x+1\right)}\right]\cdot\frac{\left(2x\right)^2-2^2}{5}\)

\(B=\frac{x^2+2x+1+6-x^2-2x+3}{2\left(x-1\right)\left(x+1\right)}\cdot\frac{\left(2x-2\right)\left(2x+2\right)}{5}\)

\(B=\frac{10\cdot2\left(x-1\right)\cdot2\left(x+1\right)}{2\left(x-1\right)\left(x+1\right)\cdot5}\)

\(B=\frac{40\left(x-1\right)\left(x+1\right)}{10\left(x-1\right)\left(x+1\right)}\)

\(B=4\)

Vậy với mọi giá trị của x thì B luôn bằng 4

Vậy giá trị của B không phụ thuộc vào biến ( đpcm )

shitbo
3 tháng 1 2019 lúc 17:07

\(Giải:\)

\(ĐKXĐ:x\ne\pm1\)
\(B=\left[\frac{x+1}{2x-2}+\frac{3}{x^2-1}-\frac{x+3}{2x+2}\right]=\left[\frac{x+1}{2x-2}+\frac{12}{4x^2-4}-\frac{x+3}{2x+2}\right]\)

\(=\left[\frac{x+1}{2x-2}+\frac{12}{\left(2x+2\right)\left(2x-2\right)}-\frac{x+3}{2x+2}\right]\)

\(=\left[\frac{\left(x+1\right)\left(2x+2\right)}{\left(2x+2\right)\left(2x-2\right)}+\frac{12}{\left(2x+2\right)\left(2x-2\right)}-\frac{\left(x+3\right)\left(2x-2\right)}{\left(2x-2\right)\left(2x+2\right)}\right]\)

\(=\frac{2x^2+4x+14-2x^2+2x-6x+6}{\left(2x-2\right)\left(2x+2\right)}\)

\(=\frac{6}{\left(2x-2\right)\left(2x+2\right)}\)

Dương Lam Hàng
3 tháng 1 2019 lúc 17:08

a) Biểu thức B xác định

Khi và chỉ khi \(x\ne\pm1\)

b) \(B=\left[\frac{x+1}{2x-2}+\frac{3}{x^2-1}-\frac{x+3}{2x+2}\right].\frac{4x^2-4}{5}\)

         \(=\left[\frac{x+1}{2\left(x-1\right)}+\frac{3}{\left(x-1\right)\left(x+1\right)}-\frac{x+3}{2\left(x+1\right)}\right].\frac{4\left(x^2-1\right)}{5}\)

        \(=\left[\frac{\left(x+1\right)^2+3.2-\left(x+3\right)\left(x-1\right)}{2\left(x-1\right)\left(x+1\right)}\right].\frac{4\left(x-1\right)\left(x+1\right)}{5}\)

          \(=\left[\frac{x^2+2x+1+6-\left(x^2-x+3x-3\right)}{2\left(x-1\right)\left(x+1\right)}\right].\frac{4\left(x-1\right)\left(x+1\right)}{5}\)

           \(=\left[\frac{x^2+2x+1+6-x^2+x-3x+3}{2\left(x+1\right)\left(x-1\right)}\right].\frac{4\left(x+1\right)\left(x-1\right)}{5}\)

          \(=\frac{10}{2\left(x+1\right)\left(x-1\right)}.\frac{4\left(x-1\right)\left(x+1\right)}{5}\)

           \(=\frac{10.4.\left(x-1\right)\left(x+1\right)}{2.5.\left(x-1\right)\left(x+1\right)}=4\)

Vậy giá trị của biểu thức không phụ thuộc vào biến x

LanAnh
Xem chi tiết
YangSu
28 tháng 6 2023 lúc 12:02

Xem lại biểu thức P.

Bui Tien Hai Dang
28 tháng 6 2023 lúc 12:17

loading...

Mình phải đi ăn nên chiều mình làm nốt câu d nhé

HT.Phong (9A5)
28 tháng 6 2023 lúc 12:22

a) Điều kiện để P được xác định là: \(x\ne1;x\ne-1\)

b) \(P=\left(\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}\right):\dfrac{2x}{5x-5}x-\dfrac{x^2-1}{x^2+2x+1}\)

\(P=\left(\dfrac{\left(x+1\right)\left(x-1\right)-\left(x+1\right)\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}\right):\dfrac{2x}{5x-5}x-\dfrac{\left(x+1\right)\left(x-1\right)}{\left(x+1\right)^2}\)

\(P=0:\dfrac{2x}{5x-5}x-\dfrac{x-1}{x+1}\)

\(P=-\dfrac{x-1}{x+1}\)

c) Theo đề ta có:

\(P=2\)

\(\Leftrightarrow-\dfrac{x-1}{x+1}=2\)

\(\Leftrightarrow-\left(x-1\right)=2x+2\)

\(\Leftrightarrow-x-2x=2-1\)

\(\Leftrightarrow-3x=1\)

\(\Leftrightarrow x=-\dfrac{1}{3}\)

d) \(P=-\dfrac{x-1}{x+1}\) nguyên khi:

\(\Leftrightarrow x-1⋮-\left(x+1\right)\)

\(\Leftrightarrow\left(x+1\right)-2⋮-\left(x+1\right)\)

\(\Leftrightarrow-2⋮-\left(x+1\right)\)

\(\Leftrightarrow2⋮x+1\)

\(\Rightarrow x+1\inƯ\left(2\right)\)

Vậy \(P\) nguyên khi \(x\in\left\{-2;0;-3;1\right\}\)

Mộc Miên
Xem chi tiết
Trên con đường thành côn...
28 tháng 7 2021 lúc 15:06

undefinedundefined

Hương Thảo
Xem chi tiết
Miracle
29 tháng 12 2022 lúc 21:59

\(A=\left(\dfrac{x-3}{x+3}-\dfrac{x+3}{x-3}\right).\dfrac{2x+6}{8x}\)

\(a,\) Điều kiện xác định: \(\left\{{}\begin{matrix}x+3\ne0\\x-3\ne0\\8x\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne-3\\x\ne3\\x\ne0\end{matrix}\right.\)

\(b,A=\left(\dfrac{x-3}{x+3}-\dfrac{x+3}{x-3}\right).\dfrac{2x+6}{8x}\)

\(=\left[\dfrac{\left(x-3\right)^2}{\left(x+3\right)\left(x-3\right)}-\dfrac{\left(x+3\right)^2}{\left(x+3\right)\left(x-3\right)}\right].\dfrac{2\left(x+3\right)}{8x}\)

\(=\dfrac{\left(x-3-x-3\right)\left(x-3+x+3\right)}{\left(x+3\right)\left(x-3\right)}.\dfrac{x+3}{4x}\)

\(=\dfrac{-6.2x}{\left(x-3\right)}.\dfrac{1}{4x}\)

\(=\dfrac{-12x}{4x\left(x-3\right)}\)

\(=\dfrac{-3}{x-3}\)

\(c,A=\dfrac{1}{2}\Rightarrow\dfrac{-3}{x-3}=\dfrac{1}{2}\Leftrightarrow x=-3\)