Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Long Nam lầy lội trần
Xem chi tiết
Herimone
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 8 2021 lúc 21:33

1: Ta có: \(A=\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}+1}{3-\sqrt{x}}\)

\(=\dfrac{2\sqrt{x}-9-\left(x-9\right)+\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{2\sqrt{x}-9-x+9+2x-4\sqrt{x}+\sqrt{x}-2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{x-\sqrt{x}-2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)

Để \(A=-\dfrac{1}{\sqrt{x}}\) thì \(x+\sqrt{x}=-\sqrt{x}+3\)

\(\Leftrightarrow x+2\sqrt{x}-3=0\)

\(\Leftrightarrow\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)=0\)

\(\Leftrightarrow x=1\left(nhận\right)\)

2: Để A nguyên thì \(\sqrt{x}+1⋮\sqrt{x}-3\)

\(\Leftrightarrow\sqrt{x}-3\in\left\{-1;1;2;-2;4;-4\right\}\)

\(\Leftrightarrow\sqrt{x}\in\left\{2;4;5;1;7\right\}\)

\(\Leftrightarrow x\in\left\{16;25;1;49\right\}\)

ngoctamnguyen
Xem chi tiết
Tô Mì
15 tháng 7 2023 lúc 20:22

(a) Với \(x\ge0,x\ne9\), ta có: \(A=\left(\dfrac{2}{\sqrt{x}-3}+\dfrac{1}{\sqrt{x}+3}\right):\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)

\(=\dfrac{2\left(\sqrt{x}+3\right)+\left(\sqrt{x}-3\right)}{x-9}:\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)

\(=\dfrac{3\left(\sqrt{x}+1\right)}{x-9}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\)

\(=\dfrac{3}{\sqrt{x}+3}.\)

(b) Ta có: \(x=7+4\sqrt{3}=\left(2+\sqrt{3}\right)^2\)

\(\Rightarrow\sqrt{x}=2+\sqrt{3}\).

Thay vào biểu thức \(A\) (thỏa mãn điều kiện), ta được: \(A=\dfrac{3}{2+\sqrt{3}+3}=\dfrac{3}{5+\sqrt{3}}\)

\(=\dfrac{3\left(5-\sqrt{3}\right)}{5^2-\left(\sqrt{3}\right)^2}=\dfrac{15-3\sqrt{3}}{22}.\)

(c) Để \(A=\dfrac{3}{5}\Rightarrow\dfrac{3}{\sqrt{x}+2}=\dfrac{3}{5}\)

\(\Rightarrow\sqrt{x}+2=5\Leftrightarrow x=9\) (không thỏa mãn).

Vậy: \(x\in\varnothing.\)

(d) Để \(A>1\Leftrightarrow A-1>0\Rightarrow\dfrac{3}{\sqrt{x}+3}-1>0\)

\(\Leftrightarrow\dfrac{1-\sqrt{x}}{\sqrt{x}+3}>0\Rightarrow1-\sqrt{x}>0\) (do \(\sqrt{x}+3>0\forall x\inĐKXĐ\))

\(\Rightarrow x< 1\). Kết hợp với điều kiện thì \(0\le x< 1.\)

(e) \(A\in Z\Rightarrow\dfrac{3}{\sqrt{x}+3}\in Z\Rightarrow\left(\sqrt{x}+3\right)\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

\(\Rightarrow\left[{}\begin{matrix}\sqrt{x}+3=1\\\sqrt{x}+3=-1\\\sqrt{x}+3=3\\\sqrt{x}+3=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=-2\left(VL\right)\\\sqrt{x}=-4\left(VL\right)\\\sqrt{x}=0\Leftrightarrow x=0\left(TM\right)\\\sqrt{x}=-6\left(VL\right)\end{matrix}\right.\)

Vậy: \(x=0.\)

Scarlett Ohara
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 10 2021 lúc 21:22

a: \(B=\dfrac{\sqrt{x}}{\sqrt{x}+3}-\dfrac{x+9}{x-9}\)

\(=\dfrac{x-3\sqrt{x}-x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{-3}{\sqrt{x}-3}\)

Scarlett Ohara
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 10 2021 lúc 21:21

\(C=\left(\dfrac{x-3\sqrt{x}-x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right)\cdot\dfrac{\sqrt{x}-3}{2\sqrt{x}+4}\)

\(=\dfrac{-3}{2\sqrt{x}+4}\)

Để \(C< -\dfrac{1}{3}\) thì \(\dfrac{-3}{2\sqrt{x}+4}+\dfrac{1}{3}< 0\)

\(\Leftrightarrow-9+2\sqrt{x}+4< 0\)

\(\Leftrightarrow\sqrt{x}< \dfrac{5}{2}\)

hay \(0\le x< \dfrac{25}{4}\)

 

phamthiminhanh
Xem chi tiết
ILoveMath
6 tháng 11 2021 lúc 19:31

a)ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)

 \(\Rightarrow A=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{2\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(\Rightarrow A=\dfrac{x+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{2\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(\Rightarrow A=\dfrac{x+\sqrt{x}-2\sqrt{x}+2-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(\Rightarrow A=\dfrac{x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(\Rightarrow A=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(\Rightarrow A=\dfrac{\sqrt{x}}{\sqrt{x}+1}\)

b) \(x=9\Rightarrow A=\dfrac{3}{3+1}=\dfrac{3}{4}\)

\(x=7-4\sqrt{3}\Rightarrow A=\dfrac{\sqrt{7-4\sqrt{3}}}{\sqrt{7-4\sqrt{3}}+1}=\dfrac{\sqrt{7-2\sqrt{12}}}{\sqrt{7-2\sqrt{12}}+1}=\dfrac{\sqrt{4-2\sqrt{3}\sqrt{4}+3}}{\sqrt{4-2\sqrt{3}\sqrt{4}+3}+1}=\dfrac{2-\sqrt{3}}{2-\sqrt{3}+1}=\dfrac{2-\sqrt{3}}{3-\sqrt{3}}=\dfrac{\left(2-\sqrt{3}\right)\left(3+\sqrt{3}\right)}{\left(3-\sqrt{3}\right)\left(3+\sqrt{3}\right)}=\dfrac{3-\sqrt{3}}{6}\)

Ngọc Vũ
Xem chi tiết
Nguyễn Lê Phước Thịnh
31 tháng 10 2021 lúc 11:03

1: ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\notin\left\{4;9\right\}\end{matrix}\right.\)

Ta có: \(A=\dfrac{2\sqrt{x}-9-x+9+2x-4\sqrt{x}+\sqrt{x}-2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)

Nguyễn Hoàng Minh
31 tháng 10 2021 lúc 11:05

\(1,A=\dfrac{2\sqrt{x}-9-x+9+2x-3\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\\ A=\dfrac{x-\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\\ A=\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\left(x\ge0;x\ne4;x\ne9\right)\\ 2,A< 1\Leftrightarrow\dfrac{\sqrt{x}+1-\sqrt{x}+3}{\sqrt{x}-3}< 0\\ \Leftrightarrow\dfrac{4}{\sqrt{x}-3}< 0\Leftrightarrow\sqrt{x}-3< 0\Leftrightarrow0\le x< 9\)

Trần Đăng	Khoa
Xem chi tiết
Etermintrude💫
6 tháng 10 2023 lúc 21:45

loading...

CHÚC EM HỌC TỐT NHÁhihi

Trang Nguyễn
Xem chi tiết
Akai Haruma
31 tháng 7 2021 lúc 9:46

Lời giải:

a. ĐKXĐ: $x\geq -9$

PT $\Leftrightarrow x+9=7^2=49$

$\Leftrightarrow x=40$ (tm)

b. ĐKXĐ: $x\geq \frac{-3}{2}$

PT $\Leftrightarrow 4\sqrt{2x+3}-\sqrt{4(2x+3)}+\frac{1}{3}\sqrt{9(2x+3)}=15$

$\Leftrightarrow 4\sqrt{2x+3}-2\sqrt{2x+3}+\sqrt{2x+3}=15$

$\Leftrgihtarrow 3\sqrt{2x+3}=15$

$\Leftrightarrow \sqrt{2x+3}=5$

$\Leftrightarrow 2x+3=25$

$\Leftrightarrow x=11$ (tm)

 

Akai Haruma
31 tháng 7 2021 lúc 9:51

c.

PT \(\Leftrightarrow \left\{\begin{matrix} 2x+1\geq 0\\ x^2-6x+9=(2x+1)^2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq \frac{-1}{2}\\ 3x^2+10x-8=0\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x\geq \frac{-1}{2}\\ (3x-2)(x+4)=0\end{matrix}\right.\)

\(\Leftrightarrow x=\frac{2}{3}\)

d. ĐKXĐ: $x\geq 1$

PT \(\Leftrightarrow \sqrt{(x-1)+4\sqrt{x-1}+4}-\sqrt{(x-1)+6\sqrt{x-1}+9}=9\)

\(\Leftrightarrow \sqrt{(\sqrt{x-1}+2)^2}-\sqrt{(\sqrt{x-1}+3)^2}=9\)

\(\Leftrightarrow \sqrt{x-1}+2-(\sqrt{x-1}+3)=9\)

\(\Leftrightarrow -1=9\) (vô lý)

Vậy pt vô nghiệm.

 

An Thy
31 tháng 7 2021 lúc 9:53

a) \(\sqrt{x+9}=7\left(x\ge-9\right)\Rightarrow x+9=49\Rightarrow x=40\)

b) \(4\sqrt{2x+3}-\sqrt{8x+12}+\dfrac{1}{3}\sqrt{18x+27}=15\left(x\ge-\dfrac{3}{2}\right)\)

\(\Rightarrow4\sqrt{2x+3}-\sqrt{4\left(2x+3\right)}+\dfrac{1}{3}\sqrt{9\left(2x+3\right)}=15\)

\(\Rightarrow4\sqrt{2x+3}-2\sqrt{2x+3}+\sqrt{2x+3}=15\)

\(\Rightarrow3\sqrt{2x+3}=15\Rightarrow\sqrt{2x+3}=5\Rightarrow2x+3=25\Rightarrow x=11\)

c) \(\sqrt{x^2-6x+9}=2x+1\)

Vì \(VT\ge0\Rightarrow VP\ge0\Rightarrow x\ge-\dfrac{1}{2}\)

\(\Rightarrow\sqrt{\left(x-3\right)^2}=2x+1\Rightarrow\left|x-3\right|=2x+1\Rightarrow\left[{}\begin{matrix}x-3=2x+1\\x-3=-2x-1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-4\left(l\right)\\x=\dfrac{2}{3}\end{matrix}\right.\)

d) \(\sqrt{x+3+4\sqrt{x-1}}-\sqrt{x+8+6\sqrt{x-1}}=9\left(x\ge1\right)\)

\(\Rightarrow\sqrt{x-1+4\sqrt{x-1}+4}-\sqrt{x-1+6\sqrt{x-1}+9}=9\)

\(\Rightarrow\sqrt{\left(\sqrt{x-1}+2\right)^2}-\sqrt{\left(\sqrt{x-1}+3\right)^2}=9\)

\(\Rightarrow\left|\sqrt{x-1}+2\right|-\left|\sqrt{x-1}+3\right|=9\)

\(\Rightarrow\sqrt{x-1}+2-\sqrt{x-1}-3=9\Rightarrow-1=9\) (vô lý)