Những câu hỏi liên quan
didudsui
Xem chi tiết
Ngô Gia Ân
Xem chi tiết
Đỗ Đức Huy
26 tháng 3 2016 lúc 3:49

a) Áp dụng bất đẳng thức Cauchy cho các số dương, ta có :

\(\log_23+\log_32>2\sqrt{\log_23.\log_32}=2\sqrt{1}=2\)

Không xảy ra dấu "=" vì \(\log_23\ne\log_32\)

Mặt khác, ta lại có :

\(\log_23+\log_32<\frac{5}{2}\Leftrightarrow\log_23+\frac{1}{\log_23}-\frac{5}{2}<0\)

                             \(\Leftrightarrow2\log^2_23-5\log_23+2<0\)

                            \(\Leftrightarrow\left(\log_23-1\right)\left(\log_23-2\right)<0\) (*)

Hơn nữa, \(2\log_23>2\log_22>1\) nên \(2\log_23-1>0\)

Mà \(\log_23<\log_24=2\Rightarrow\log_23-2<0\)

Từ đó suy ra (*) luôn đúng. Vậy \(2<\log_23+\log_32<\frac{5}{2}\)

b) Vì \(a,b\ge1\) nên \(\ln a,\ln b,\ln\frac{a+b}{2}\) không âm. 

Áp dụng bất đẳng thức Cauchy ta có

\(\ln a+\ln b\ge2\sqrt{\ln a.\ln b}\)

Suy ra 

\(2\left(\ln a+\ln b\right)\ge\ln a+\ln b+2\sqrt{\ln a\ln b}=\left(\sqrt{\ln a}+\sqrt{\ln b}\right)^2\)

Mặt khác :

\(\frac{a+b}{2}\ge\sqrt{ab}\Rightarrow\ln\frac{a+b}{2}\ge\frac{1}{2}\left(\ln a+\ln b\right)\)

Từ đó ta thu được :

\(\ln\frac{a+b}{2}\ge\frac{1}{4}\left(\sqrt{\ln a}+\sqrt{\ln b}\right)^2\)

hay \(\frac{\sqrt{\ln a}+\sqrt{\ln b}}{2}\le\sqrt{\ln\frac{a+b}{2}}\)

c) Ta chứng minh bài toán tổng quát :

\(\log_n\left(n+1\right)>\log_{n+1}\left(n+2\right)\) với mọi n >1

Thật vậy, 

\(\left(n+1\right)^2=n\left(n+2\right)+1>n\left(n+2\right)>1\) 

suy ra :

\(\log_{\left(n+1\right)^2}n\left(n+2\right)<1\Leftrightarrow\frac{1}{2}\log_{n+1}n\left(n+2\right)<1\)

                                  \(\Leftrightarrow\log_{n+1}n+\log_{\left(n+1\right)}n\left(n+2\right)<2\)

Áp dụng bất đẳng thức Cauchy ta có :

\(2>\log_{\left(n+1\right)}n+\log_{\left(n+1\right)}n\left(n+2\right)>2\sqrt{\log_{\left(n+1\right)}n.\log_{\left(n+1\right)}n\left(n+2\right)}\)

Do đó ta có :

\(1>\log_{\left(n+1\right)}n.\log_{\left(n+1\right)}n\left(n+2\right)\) và \(\log_n\left(n+1>\right)\log_{\left(n+1\right)}\left(n+2\right)\) với mọi n>1

 

Bình luận (0)
Nguyễn Kim Thành
Xem chi tiết
Nguyễn Việt Lâm
6 tháng 3 2021 lúc 0:42

\(VT\ge\dfrac{1}{\left(a^2+1\right)-1}+\dfrac{1}{\left(b^2+1\right)-1}+\dfrac{1}{\left(c^2+1\right)-1}+4-\dfrac{4}{ab+1}+4-\dfrac{4}{bc+1}+4-\dfrac{4}{ca+1}\)

\(VT\ge\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}-\dfrac{4}{ab+1}-\dfrac{4}{bc+1}-\dfrac{4}{ca+1}+12\)

Mặt khác \(a;b;c\ge1\Rightarrow\left(a-1\right)\left(b-1\right)\ge0\Rightarrow ab+1\ge a+b\) (và tương tự...)

\(\Rightarrow VT\ge\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}-\dfrac{4}{a+b}-\dfrac{4}{b+c}-\dfrac{4}{c+a}+12\)

\(VT\ge\dfrac{4}{\left(a+b\right)^2}+\dfrac{4}{\left(b+c\right)^2}+\dfrac{4}{\left(c+a\right)^2}-\dfrac{4}{a+b}-\dfrac{4}{b+c}-\dfrac{4}{c+a}+1+1+1+9\)

\(VT\ge\left(\dfrac{2}{a+b}-1\right)^2+\left(\dfrac{2}{b+c}-1\right)^2+\left(\dfrac{2}{c+a}-1\right)^2+9\ge9\)

Bình luận (0)
Trần Trang
Xem chi tiết
Đỗ Hồng Ngọc
Xem chi tiết
trần gia bảo
24 tháng 4 2019 lúc 21:19

Ta có: \(\frac{1+ab}{1+a^2}+\frac{1+ab}{1+b^2}=\left(1+ab\right)\left(\frac{1}{1+a^2}+\frac{1}{1+b^2}\right)\)

mà \(\frac{1}{1+a^2}+\frac{1}{1+b^2}\ge\frac{4}{2+a^2+b^2}\)( Áp dụng BĐT phụ \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\))

Mặt khác: \(a^2+b^2\ge2ab\)

=> \(\frac{1}{1+a^2}+\frac{1}{1+b^2}\ge\frac{4}{2+2ab}=\frac{2}{1+ab}\)

=> \(\left(1+ab\right)\left(\frac{1}{1+a^2}+\frac{1}{1+b^2}\right)\ge\left(1+ab\right)\left(\frac{2}{1+ab}\right)=2\)(đpcm)

Bình luận (0)
Nguyễn Thanh Hiền
Xem chi tiết
Lê Bình
Xem chi tiết
missing you =
2 tháng 7 2021 lúc 7:04

\(\dfrac{a}{b+2c}+\dfrac{b}{c+2a}+\dfrac{c}{a+2b}=\dfrac{a^2}{ab+2ac}+\dfrac{b^2}{bc+2ab}+\dfrac{c^2}{ac+2bc}\)

áp dụng BDT CAUCHY SCHAWRZ

\(=>\dfrac{a^2}{ab+2ac}+\dfrac{b^2}{bc+2ab}+\dfrac{c^2}{ac+2bc}\ge\dfrac{\left(a+b+c\right)^2}{ab+bc+ac+2ac+2ab+2bc}\)

\(=\dfrac{\left(a+b+c\right)^2}{3\left(ab+bc+ac\right)}\ge\dfrac{3\left(ab+bc+ac\right)}{3\left(ab+bc+ac\right)}=1\)

Bình luận (1)
Vo Thi Minh Dao
Xem chi tiết
Nguyen
28 tháng 1 2019 lúc 19:01

Áp dụng BĐT Bunhiacopxki, ta có:

\(a+b+c+d\le\sqrt{\left(1^2+1^2+1^2+1^2\right)\left(a^2+b^2+c^2+d^2\right)}=2\sqrt{a^2+b^2+c^2+d^2}\)

\(\Leftrightarrow\sqrt{a^2+b^2+c^2+d^2}\ge1\)

\(\Leftrightarrow a^2+b^2+c^2+d^2\ge1\)(đpcm).

Bình luận (0)
le vi dai
Xem chi tiết