Tìm mọi gía trị nguyên của x để M nhận giá trị nguyên M=\(\dfrac{\sqrt{x}+5}{\sqrt{x}-2}\)
Bài 4. Cho biểu thức M = \(\dfrac{\sqrt{x+2}}{2\sqrt{x}-3}\)với 𝑥 ≥ 0; 𝑥 ≠ 9 4 . Tìm gía trị nguyên của x để M có giá trị là một số tự nhiên
Lời giải:
$M(2\sqrt{x}-3)=\sqrt{x}+2$
$\Leftrightarrow \sqrt{x}(2M-1)=3M-2$
$\Leftrightarrow x=(\frac{3M-2}{2M-1})^2$
Vì $x$ nguyên nên $\frac{3M-2}{2M-1}$ nguyên
$\Rightarrow 3M-2\vdots 2M-1$
$\Leftrightarrow 6M-4\vdots 2M-1$
$\Leftrightarrow 3(2M-1)-1\vdots 2M-1$
$\Leftrightarrow 1\vdots 2M-1$
$\Rightarrow 2M-1\in\left\{\pm 1\right\}$
$\Rightarrow M=0;1$
$\Leftrightarrow x=4; 1$ (đều tm)
\(A=\dfrac{2\sqrt{x}}{\sqrt{x}-3}\) và B=\(\dfrac{2}{\sqrt{x}-3}+\dfrac{\sqrt{x}}{\sqrt{x}+3}-\dfrac{3-5\sqrt{x}}{9-x}\) với x ≥ 0,x ≠ 9
Tìm các giá trị nguyên của để biểu thức nhận giá trị nguyên.
tìm các giá trị nguyên của x để biểu thức P=A.B nhận giá trị nguyên
\(\left(\dfrac{\sqrt{x}}{x-4}-\dfrac{1}{\sqrt{x}+2}\right):\dfrac{\sqrt{x}-2}{x-4}\)
a) Tìm ĐKXĐ và rút gọn biểu thức A
b) Tìm giá trị của x để A< O
c) Tìm giá trị nguyên của x để biểu thức A nhận giá trị nguyên
Tìm số chính phương để M\(=\dfrac{12\sqrt{x}+5}{3\sqrt{x}-1}\) nhận giá trị nguyên
Để M là số nguyên thì \(12\sqrt{x}+5⋮3\sqrt{x}-1\)
=>\(12\sqrt{x}-4+9⋮3\sqrt{x}-1\)
=>\(3\sqrt{x}-1\in\left\{1;-1;3;-3;9;-9\right\}\)
=>\(3\sqrt{x}\in\left\{2;0;4;10\right\}\)
=>\(\sqrt{x}\in\left\{0;\dfrac{2}{3};\dfrac{4}{3};\dfrac{10}{3}\right\}\)
mà x là số chính phương
nên x=0
\(M=\dfrac{12\sqrt{x}+5}{3\sqrt{x}-1}\)
\(M=\dfrac{12\sqrt{x}-4+9}{3\sqrt{x}-1}\)
\(M=\dfrac{4\left(3\sqrt{x}-1\right)+9}{3\sqrt{x}-1}\)
\(M=\dfrac{4\left(3\sqrt{x}-1\right)}{3\sqrt{x}-1}+\dfrac{9}{3\sqrt{x}-1}\)
\(M=4+\dfrac{9}{3\sqrt{x}-1}\)
M nguyên khi:
\(9\) ⋮ \(3\sqrt{x}-1\)
Mà: \(3\sqrt{x}-1\ge-1\)
\(\Rightarrow3\sqrt{x}-1\in\left\{1;-1;3;9\right\}\)
\(\Rightarrow\sqrt{x}\in\left\{\dfrac{2}{3};0;\dfrac{4}{3};\dfrac{10}{3}\right\}\)
\(\Rightarrow x\in\left\{\dfrac{4}{9};0;\dfrac{16}{9};\dfrac{100}{9}\right\}\)
Mà: x là số chính phương nên:
x = 0
Cho biểu thức: N=\(\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+\dfrac{2\left(x-1\right)}{\sqrt{x}-1}\)với x ≥0; x≠1
a) Rút gọn N
b) Tìm giá trị nhỏ nhất của N
c) Tim x để biểu thức M=\(\dfrac{2\sqrt{x}}{N}\)nhận giá trị nguyên
a: Ta có: \(N=\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+\dfrac{2\left(x-1\right)}{\sqrt{x}-1}\)
\(=x-\sqrt{x}-2\sqrt{x}-1+2\sqrt{x}+2\)
\(=x-\sqrt{x}+1\)
P = \(\left(\dfrac{2\sqrt{x}+2}{x\sqrt{x}+x-\sqrt{x}-1}+\dfrac{1}{\sqrt{x}+1}\right):\left(1-\dfrac{\sqrt{x}}{\sqrt{x}+1}\right)\)
a) Rút gọn P
b) Tìm các giá trị x nguyên để P nhận giá trị nguyên
c) Tìm giá trị nhỏ nhất của biểu thức \(\dfrac{1}{P}\)
a: \(P=\left(\dfrac{2+\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\dfrac{\sqrt{x}+1-\sqrt{x}}{\sqrt{x}+1}\)
\(=\dfrac{1}{\sqrt{x}-1}\cdot\dfrac{\sqrt{x}+1}{1}=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
b: Để P nguyên thì \(\sqrt{x}+1⋮\sqrt{x}-1\)
\(\Leftrightarrow\sqrt{x}-1\in\left\{-1;1;2\right\}\)
hay \(x\in\left\{0;4;9\right\}\)
Cho biểu thức \(M=\dfrac{2\sqrt{x}+1}{\sqrt{x}-3}\), tìm giá trị nguyên của x để biểu thức M đạt giá trị nguyên.
Lời giải:
$M=\frac{2(\sqrt{x}-3)+7}{\sqrt{x}-3}=2+\frac{7}{\sqrt{x}-3}$
Để $M$ nguyên thì $\frac{7}{\sqrt{x}-3}$
Với $x$ nguyên không âm thì điều này xảy ra khi mà $\sqrt{x}-3$ là ước của $7$
$\Rightarrow \sqrt{x}-3\in\left\{\pm 1; \pm 7\right\}$
$\Rightarrow \sqrt{x}\in \left\{4; 2; 10; -4\right\}$
Vì $\sqrt{x}\geq 0$ nên $\sqrt{x}\in \left\{4; 2; 10\right\}$
$\Rightarrow x\in \left\{16; 4; 100\right\}$ (tm)
\(A=\dfrac{2\sqrt{x}}{\sqrt{x}-3}vàB=\dfrac{2}{\sqrt{x}-3}+\dfrac{\sqrt{x}}{\sqrt{x}+3}-\dfrac{3-5\sqrt{x}}{9-x}\) với x ≥ 0, x ≠ 9
tìm các giá trị nguyên của x để biểu thức P=A.B nhận giá trị nguyên
\(P=A\cdot B\)
\(=\dfrac{2\sqrt{x}}{\sqrt{x}-3}\cdot\dfrac{2\sqrt{x}+6+x-3\sqrt{x}+3-5\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{2\sqrt{x}}{\left(\sqrt{x}-3\right)}\cdot\dfrac{x-6\sqrt{x}+9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{2\sqrt{x}}{\left(\sqrt{x}+3\right)}\cdot\dfrac{\left(\sqrt{x}-3\right)^2}{\left(\sqrt{x}-3\right)^2}=\dfrac{2\sqrt{x}}{\sqrt{x}+3}\)
Để P nguyên thì
\(2\sqrt{x}⋮\sqrt{x}+3\)
\(\Leftrightarrow2\sqrt{x}+6-6⋮\sqrt{x}+3\)
=>\(\sqrt{x}+3\inƯ\left(-6\right)\)
=>\(\sqrt{x}+3\in\left\{3;6\right\}\)
=>\(\sqrt{x}\in\left\{0;3\right\}\)
=>\(x\in\left\{0;9\right\}\)
Kết hợp ĐKXĐ, ta được: x=0
\(\dfrac{\sqrt{x}+13}{\sqrt{x}+5}\)tìm giá trị x để biểu thức nhận giá trị nguyên
ĐKXĐ: x>=0
Để A là số nguyên thì \(\sqrt{x}+13⋮\sqrt{x}+5\)
=>\(\sqrt{x}+5+8⋮\sqrt{x}+5\)
=>\(\sqrt{x}+5\inƯ\left(8\right)\)
mà \(\sqrt{x}+5>=5\)
nên \(\sqrt{x}+5=8\)
=>x=9
ĐK: \(x\ge0\)
Để \(\dfrac{\sqrt{x}+13}{\sqrt{x}+5}\) có giá trị nguyên
Mà: \(\dfrac{\sqrt{x}+13}{\sqrt{x}+5}=\dfrac{\sqrt{x}+5+8}{\sqrt{x}+5}\)
\(=\dfrac{\sqrt{x}+5}{\sqrt{x}+5}+\dfrac{8}{\sqrt{x}+5}=1+\dfrac{8}{\sqrt{x}+5}\)
Vậy: \(8\) ⋮ \(\sqrt{x}+5\)
\(\Rightarrow\sqrt{x}+5\inƯ\left(8\right)=\left\{1;-1;2;-2;4;-4;8;-8\right\}\)
Mà: \(\sqrt{x}+5\ge5\)
\(\Rightarrow\sqrt{x}+5\in\left\{8\right\}\)
\(\Rightarrow x=9\left(tm\right)\)
Tìm x nguyên để P=\(\dfrac{\sqrt{x}+5}{3\sqrt{x}+1}\) nhận giá trị nguyên
\(P\in Z\Rightarrow3P\in Z\Rightarrow\dfrac{3\sqrt{x}+15}{3\sqrt{x}+1}\in Z\)
\(\Rightarrow1+\dfrac{14}{3\sqrt{x}+1}\in Z\)
\(\Rightarrow3\sqrt{x}+1=Ư\left(14\right)=\left\{1;2;7;14\right\}\) (do \(3\sqrt{x}+1\ge1\))
\(3\sqrt{x}+1=1\Rightarrow x=0\)
\(3\sqrt{x}+1=2\Rightarrow x=\dfrac{1}{9}\notin Z\) (loại)
\(3\sqrt{x}+1=7\Rightarrow x=4\)
\(3\sqrt{x}+1=14\Rightarrow x=\dfrac{169}{9}\notin Z\) (loại)
Thế \(x=\left\{0;4\right\}\) vào P đều thỏa mãn
Vậy ....