\(P=A\cdot B\)
\(=\dfrac{2\sqrt{x}}{\sqrt{x}-3}\cdot\dfrac{2\sqrt{x}+6+x-3\sqrt{x}+3-5\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{2\sqrt{x}}{\left(\sqrt{x}-3\right)}\cdot\dfrac{x-6\sqrt{x}+9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{2\sqrt{x}}{\left(\sqrt{x}+3\right)}\cdot\dfrac{\left(\sqrt{x}-3\right)^2}{\left(\sqrt{x}-3\right)^2}=\dfrac{2\sqrt{x}}{\sqrt{x}+3}\)
Để P nguyên thì
\(2\sqrt{x}⋮\sqrt{x}+3\)
\(\Leftrightarrow2\sqrt{x}+6-6⋮\sqrt{x}+3\)
=>\(\sqrt{x}+3\inƯ\left(-6\right)\)
=>\(\sqrt{x}+3\in\left\{3;6\right\}\)
=>\(\sqrt{x}\in\left\{0;3\right\}\)
=>\(x\in\left\{0;9\right\}\)
Kết hợp ĐKXĐ, ta được: x=0