tìm giá trị của x để biểu thức \(\dfrac{x^3-x^2+2}{x-1}\)( với x#1)có giá trị là 1 số nguyên
cho biểu thức: A=\(\dfrac{x^2+x-2}{x},B=\dfrac{x-1}{x+1}+\dfrac{3x-x^2}{x^2-1}\)
a)tính giá trị biểu thức với A=3
b)rút gọn biểu thức B
c)tìm giá trị của x để biểu thức P=A.B đạt giá trị nhỏ nhất
ĐKXĐ : \(x\ne0;x\ne\pm1\)
a) Bạn ghi lại rõ đề.
b) \(B=\dfrac{x-1}{x+1}+\dfrac{3x-x^2}{x^2-1}=\dfrac{x-1}{x+1}+\dfrac{3x-x^2}{\left(x-1\right).\left(x+1\right)}\)
\(=\dfrac{\left(x-1\right)^2+3x-x^2}{\left(x-1\right).\left(x+1\right)}=\dfrac{x+1}{\left(x-1\right).\left(x+1\right)}=\dfrac{1}{x-1}\)
c) \(P=A.B=\dfrac{x^2+x-2}{x.\left(x-1\right)}=\dfrac{\left(x-1\right).\left(x+2\right)}{x\left(x-1\right)}=\dfrac{x+2}{x}=1+\dfrac{2}{x}\)
Không tồn tại Min P \(\forall x\inℝ\)
Cho biểu thức:
B = (\(\dfrac{x-2}{2x-2}+\dfrac{3}{2x-2}-\dfrac{x+3}{2x+2}\)) : (\(1-\dfrac{x-3}{x+1}\))
a) Tìm điều kiện của x để giá trị của biểu thức được xác định
b) Tính giá trị của biểu thức B với x = 2005
a) ĐKXĐ: \(x\notin\left\{1;-1\right\}\)
b) Ta có: \(B=\left(\dfrac{x-2}{2x-2}+\dfrac{3}{2x-2}-\dfrac{x+3}{2x+2}\right):\left(1-\dfrac{x-3}{x+1}\right)\)
\(=\left(\dfrac{x-1}{2x-2}-\dfrac{x+3}{2x+2}\right):\left(\dfrac{x+1-x-3}{x+1}\right)\)
\(=\left(\dfrac{\left(x-1\right)\left(x+1\right)}{2\left(x-1\right)\left(x+1\right)}-\dfrac{\left(x+3\right)\left(x-1\right)}{2\left(x-1\right)\left(x+1\right)}\right):\dfrac{-2}{x+1}\)
\(=\dfrac{x^2-1-x^2-2x+3}{2\left(x-1\right)\left(x+1\right)}\cdot\dfrac{x+1}{-2}\)
\(=\dfrac{-2x+2}{2\left(x-1\right)}\cdot\dfrac{-1}{2}\)
\(=\dfrac{-2\left(x-1\right)}{2\left(x-1\right)}\cdot\dfrac{-1}{2}\)
\(=\dfrac{1}{2}\)
Vậy: Khi x=2005 thì \(B=\dfrac{1}{2}\)
a/
Để biểu thức được xác định
\(=>\left\{{}\begin{matrix}2x-2\ne0\\2x+2\ne0\\x+1\ne0\end{matrix}\right.\)
\(\odot2x-2\ne0\)
\(2x\ne2\)
\(x\ne1\)
\(\odot2x+2\ne0\)
\(2x\ne-2\)
\(x\ne-1\)
\(\odot x+1\ne0\)
\(x\ne-1\)
Vậy điều kiện xác định của bt là: \(x\ne-1;x\ne\pm2\)
Cho biểu thức A=(\(\dfrac{x^2}{x^3-4x}+\dfrac{6}{6-3x}+\dfrac{1}{x+2}\)):(x-2 + \(\dfrac{10-x^2}{x+2}\))
a)Rút gọn A
b)Tính giá trị x của A với giá trị của x thỏa mãn |2x-1|=3
c) Tìm x để (3-4x).A<3
d) Tìm giá trị nhỏ nhất của biểu thức B=(8-\(^{x^3}\)).A+x
P = \(\left(1-\dfrac{x^2}{x^2-x+1}\right):\dfrac{x^2+2x+1}{x^3+1}\)
a)Tìm điều kiện của x để biểu thức P xác định
b)Rút gọn biểu thức P
c)Với giá trị nào của x thì P = 2
d)Tìm các giá trị nguyên của x để P nhận giá trị nguyên
P = \(\left(1-\dfrac{x^2+2x+1}{x^3+1}\right)\)\(:\dfrac{x^2+2x+1}{x^3+1}\)
a)Tìm điều kiện của x để biểu thức P xác định
b)Rút gọn biểu thức P
c)Với giá trị nào của x thì P = 2
d)Tìm các giá trị nguyên của x để P nhận giá trị nguyên
a: ĐKXĐ: x<>-1
b: \(P=\left(1-\dfrac{x+1}{x^2-x+1}\right)\cdot\dfrac{x^2-x+1}{x+1}\)
\(=\dfrac{x^2-x+1-x-1}{x^2-x+1}\cdot\dfrac{x^2-x+1}{x+1}=\dfrac{x^2-2x}{x+1}\)
c: P=2
=>x^2-2x=2x+2
=>x^2-4x-2=0
=>\(x=2\pm\sqrt{6}\)
Bài 1. Cho biểu thức: \(\dfrac{x+2}{x+3}-\dfrac{5}{x^2+x-6}+\dfrac{1}{2-x}\)
a) Tìm điều kiện xác định của P
b) Rút gọn biểu thức P
c) Tìm x để P = \(\dfrac{-3}{4}\)
d) Tìm các giá trị nguyên của x để biểu thức P cũng có giá trị nguyên
e) Tính giá trị của biểu thức P khi \(x^2-9=0\)
Bài 1: ĐKXĐ:`x + 3 ne 0` và `x^2+ x-6 ne 0 ; 2-x ne 0`
`<=> x ne -3 ; (x-2)(x+3) ne 0 ; x ne2`
`<=>x ne -3 ; x ne 2`
b) Với `x ne - 3 ; x ne 2` ta có:
`P= (x+2)/(x+3) - 5/(x^2 +x -6) + 1/(2-x)`
`P = (x+2)/(x+3) - 5/[(x-2)(x+3)] + 1/(2-x)`
`= [(x+2)(x-2)]/[(x-2)(x+3)] - 5/[(x-2)(x+3)] - (x+3)/[(x-2)(x+3)]`
`= (x^2 -4)/[(x-2)(x+3)] - 5/[(x-2)(x+3)] - (x+3)/[(x-2)(x+3)]`
`=(x^2 - 4 - 5 - x-3)/[(x-2)(x+3)]`
`= (x^2 - x-12)/[(x-2)(x+3)]`
`= [(x-4)(x+3)]/[(x-2)(x+3)]`
`= (x-4)/(x-2)`
Vậy `P= (x-4)/(x-2)` với `x ne -3 ; x ne 2`
c) Để `P = -3/4`
`=> (x-4)/(x-2) = -3/4`
`=> 4(x-4) = -3(x-2)`
`<=>4x -16 = -3x + 6`
`<=> 4x + 3x = 6 + 16`
`<=> 7x = 22`
`<=> x= 22/7` (thỏa mãn ĐKXĐ)
Vậy `x = 22/7` thì `P = -3/4`
d) Ta có: `P= (x-4)/(x-2)`
`P= (x-2-2)/(x-2)`
`P= 1 - 2/(x-2)`
Để P nguyên thì `2/(x-2)` nguyên
`=> 2 vdots x-2`
`=> x -2 in Ư(2) ={ 1 ;2 ;-1;-2}`
+) Với `x -2 =1 => x= 3` (thỏa mãn ĐKXĐ)
+) Với `x -2 =2 => x= 4` (thỏa mãn ĐKXĐ)
+) Với `x -2 = -1=> x= 1` (thỏa mãn ĐKXĐ)
+) Với `x -2 = -2 => x= 0`(thỏa mãn ĐKXĐ)
Vậy `x in{ 3 ;4; 1; 0}` thì `P` nguyên
e) Từ `x^2 -9 =0`
`<=> (x-3)(x+3)=0`
`<=> x= 3` hoặc `x= -3`
+) Với `x=3` (thỏa mãn ĐKXĐ) thì:
`P = (3-4)/(3-2)`
`P= -1/1`
`P=-1`
+) Với `x= -3` thì không thỏa mãn ĐKXĐ
Vậy với x= 3 thì `P= -1`
Cho hai biểu thức A = \(\dfrac{x^2+x}{3\left(x+3\right)}\) và B = \(\dfrac{1}{x+1}-\dfrac{1}{1-x}-\dfrac{3-x}{x^2-1}\) với x ≠ -3; -1, 1
a) Tính giá trị của biểu thức A khi | x + 4 | = 1
b) Rút gọn biểu thức B
c) Tìm các giá trị của x để B.A <1
a: Ta có: |x+4|=1
=>x+4=1 hoặc x+4=-1
=>x=-3(loại) hoặc x=-5
Khi x=-5 thì \(A=\dfrac{\left(-5\right)^2-5}{3\left(-5+3\right)}=\dfrac{20}{3\cdot\left(-2\right)}=\dfrac{-10}{3}\)
b: \(B=\dfrac{x-1+x+1-3+x}{\left(x-1\right)\left(x+1\right)}=\dfrac{3x-3}{\left(x-1\right)\left(x+1\right)}=\dfrac{3}{x+1}\)
Bài 4: Cho biểu thức : B = \(\dfrac{1}{2\sqrt{x}-2}-\dfrac{1}{2\sqrt{x}+2}+\dfrac{\sqrt{x}}{1-x}\)
a) Tìm TXĐ rồi rút gọn biểu thức B; b) Tính giá trị của B với x =3;
c) Tìm giá trị của x để |A|=\(\dfrac{1}{2}\).
a: TXĐ: D=[0;+\(\infty\))\{1}
\(B=\dfrac{1}{2\sqrt{x}-2}-\dfrac{1}{2\sqrt{x}+2}-\dfrac{\sqrt{x}}{x-1}\)
\(=\dfrac{\sqrt{x}+1-\sqrt{x}+1-2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\cdot2}\)
\(=\dfrac{-1}{\sqrt{x}+1}\)
\(a,ĐK:x\ge0\\ x\ne1\\ B=\dfrac{\sqrt{x}+1-\sqrt{x}+1-2\sqrt{x}}{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\\ B=\dfrac{2\left(1-\sqrt{x}\right)}{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{-1}{\sqrt{x}+1}\\ b,x=3\Leftrightarrow B=\dfrac{-1}{\sqrt{3}+1}=\dfrac{1-\sqrt{3}}{2}\\ c,\left|B\right|=\dfrac{1}{2}\Leftrightarrow\left|\dfrac{-1}{\sqrt{x}+1}\right|=\dfrac{1}{2}\\ \Leftrightarrow\dfrac{1}{\sqrt{x}+1}=\dfrac{1}{2}\left(\sqrt{x}+1\ge1>0\right)\\ \Leftrightarrow\sqrt{x}+1=2\Leftrightarrow x=1\left(tm\right)\)
Bài 1
A=\(\dfrac{1}{2\sqrt{3}-2}\)-\(\dfrac{1}{2\sqrt{3}+2}\) và B=\(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{2\sqrt{x}-1}{x-\sqrt{x}}\) với x>;x≠1
a)Rút gọn biểu thức A và B
b)Hãy tìm các giá trị của x để giá trị biểu thức B bằng \(\dfrac{2}{5}\) giá trị biểu thức A
`a)A=[2\sqrt{3}+2-2\sqrt{3}+2]/[(2\sqrt{3}-2)(2\sqrt{3}+2)]`
`A=4/[12-4]=1/2`
Với `x > 0,x ne 1` có:
`B=[x-2\sqrt{x}+1]/[\sqrt{x}(\sqrt{x}-1)]`
`B=[(\sqrt{x}-1)^2]/[\sqrt{x}(\sqrt{x}-1)]=[\sqrt{x}-1]/\sqrt{x}`
`b)B=2/5A`
`=>[\sqrt{x}-1]/\sqrt{x}=2/5 . 1/2`
`<=>5\sqrt{x}-5=\sqrt{x}`
`<=>\sqrt{x}=5/4`
`<=>x=25/16` (t/m)
Tìm TXĐ của cả 2 biểu thức sau, rồi tìm giá trị của x để giá trị của 2 biểu thức = nhau:
\(\dfrac{x+2}{x+3}\) - \(\dfrac{x+1}{x-1}\) và \(\dfrac{4}{\left(x+3\right)\left(x-1\right)}\)
TXĐ: \(\left\{{}\begin{matrix}x\in R\\x\notin\left\{-3;1\right\}\end{matrix}\right.\)
Để giá trị 2 biểu thức bằng nhau thì \(\dfrac{x+2}{x+3}-\dfrac{x+1}{x-1}=\dfrac{4}{\left(x+3\right)\left(x-1\right)}\)
\(\Leftrightarrow\dfrac{\left(x+2\right)\left(x-1\right)}{\left(x+3\right)\left(x-1\right)}-\dfrac{\left(x+1\right)\left(x+3\right)}{\left(x-1\right)\left(x+3\right)}=\dfrac{4}{\left(x+3\right)\left(x-1\right)}\)
Suy ra: \(x^2-x+2x-2-\left(x^2+4x+3\right)=4\)
\(\Leftrightarrow x^2+x-2-x^2-4x-3-4=0\)
\(\Leftrightarrow3x-9=0\)
\(\Leftrightarrow3x=9\)
hay x=3(thỏa ĐK)
Vậy: S={3}