Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Quý Trung
Xem chi tiết
Akai Haruma
25 tháng 7 2021 lúc 10:24

Bài 1:

a.

$|x+\frac{7}{4}|=\frac{1}{2}$

\(\Leftrightarrow \left[\begin{matrix} x+\frac{7}{4}=\frac{1}{2}\\ x+\frac{7}{4}=-\frac{1}{2}\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=\frac{-5}{4}\\ x=\frac{-9}{4}\end{matrix}\right.\)

b. $|2x+1|-\frac{2}{5}=\frac{1}{3}$
$|2x+1|=\frac{1}{3}+\frac{2}{5}$

$|2x+1|=\frac{11}{15}$

\(\Leftrightarrow \left[\begin{matrix} 2x+1=\frac{11}{15}\\ 2x+1=\frac{-11}{15}\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=\frac{-2}{15}\\ x=\frac{-13}{15}\end{matrix}\right.\)

c.

$3x(x+\frac{2}{3})=0$

\(\Leftrightarrow \left[\begin{matrix} 3x=0\\ x+\frac{2}{3}=0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=0\\ x=\frac{-3}{2}\end{matrix}\right.\)

d.

$x+\frac{1}{3}=\frac{2}{5}-(\frac{-1}{3})=\frac{2}{5}+\frac{1}{3}$

$\Leftrightarrow x=\frac{2}{5}$

Akai Haruma
25 tháng 7 2021 lúc 10:26

Bài 2:

$\frac{1}{100}-A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}$

$=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{100-99}{99.100}$

$=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}$

$=\frac{99}{100}$

$\Rightarrow A=\frac{1}{100}-\frac{99}{100}=-\frac{98}{100}=\frac{-49}{50}$

Nguyễn Lê Phước Thịnh
25 tháng 7 2021 lúc 23:32

Bài 1: 

a) Ta có: \(\left|x+\dfrac{7}{4}\right|=\dfrac{1}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{7}{4}=\dfrac{1}{2}\\x+\dfrac{7}{4}=\dfrac{-1}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-5}{4}\\x=\dfrac{-9}{4}\end{matrix}\right.\)

b) Ta có: \(\left|2x+1\right|-\dfrac{2}{5}=\dfrac{1}{3}\)

\(\Leftrightarrow\left|2x+1\right|=\dfrac{11}{15}\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+1=\dfrac{11}{15}\\2x+1=\dfrac{-11}{15}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=\dfrac{-4}{15}\\2x=\dfrac{-26}{15}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-2}{15}\\x=\dfrac{-13}{15}\end{matrix}\right.\)

c) Ta có: \(3x\left(x+\dfrac{2}{3}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+\dfrac{2}{3}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{-2}{3}\end{matrix}\right.\)

원회으Won Hoe Eu
Xem chi tiết
Kamato Heiji
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 3 2021 lúc 21:44

a) Ta có: \(\dfrac{2x+1}{6}-\dfrac{x-2}{4}=\dfrac{3-2x}{3}-x\)

\(\Leftrightarrow\dfrac{2\left(2x+1\right)}{12}-\dfrac{3\left(x-2\right)}{12}=\dfrac{4\left(3-2x\right)}{12}-\dfrac{12x}{12}\)

\(\Leftrightarrow4x+2-3x+6=12-8x-12x\)

\(\Leftrightarrow x+8-12+20x=0\)

\(\Leftrightarrow21x-4=0\)

\(\Leftrightarrow21x=4\)

\(\Leftrightarrow x=\dfrac{4}{21}\)

Vậy: \(S=\left\{\dfrac{4}{21}\right\}\)

Akai Haruma
5 tháng 3 2021 lúc 22:00

Hình như em viết công thức bị lỗi rồi. Em cần chỉnh sửa lại để được hỗ trợ tốt hơn!

Akai Haruma
5 tháng 3 2021 lúc 23:03

a) 

PT \(\Leftrightarrow \frac{4x+2}{12}-\frac{3x-6}{12}=\frac{12-8x}{12}-\frac{12x}{12}\)

\(\Leftrightarrow 4x+2-3x+6=12-8x-12x\)

\(\Leftrightarrow 21x=4\Leftrightarrow x=\frac{4}{21}\)

b) 

PT \(\Leftrightarrow \frac{30x+15}{20}-\frac{100}{20}-\frac{6x+4}{20}=\frac{24x-12}{20}\)

\(\Leftrightarrow 30x+15-100-6x-4=24x-12\Leftrightarrow -89=-12\) (vô lý)

Vậy pt vô nghiệm.

Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 2 2022 lúc 16:27

a: =>2x-1=-2

=>2x=-1

hay x=-1/2

b: \(\Leftrightarrow\left[{}\begin{matrix}3x+2=0\\-\dfrac{2}{5}x-7=0\end{matrix}\right.\Leftrightarrow x\in\left\{-\dfrac{2}{3};-\dfrac{35}{2}\right\}\)

c: x/8=9/4

nên x/8=18/8

hay x=18

d: \(\Leftrightarrow\left(x-3\right)^2=36\)

=>x-3=6 hoặc x-3=-6

=>x=9 hoặc x=-3

e: =>-1,7x=6,12

hay x=-3,6

h: =>x-3,4=27,6

hay x=31

Rhider
22 tháng 2 2022 lúc 16:42

a) \(\dfrac{1}{3}\div\left(2x-1\right)=\dfrac{-1}{6}\)

\(\left(2x-1\right).\dfrac{1}{3}\div\left(2x-1\right)=\left(2x-1\right)\left(-\dfrac{1}{6}\right)\)

\(\dfrac{1}{3}=\left(2x-1\right)\left(-\dfrac{1}{6}\right)\)

\(\dfrac{1}{3}=-1\left(2x-1\right)\div6\)

\(\dfrac{1}{3}=-2x+1\div6\)

\(x=-\dfrac{1}{2}\)

b) \(\left(3x+2\right)\left(\dfrac{-2}{5}x-7\right)=0\)

\(TH1:3x+2=0\)

\(3x=0-2\)

\(3x=-2\)

\(x=\dfrac{-2}{3}\)

\(TH2:\left(-\dfrac{2}{5}x-7\right)=0\)

\(\left(\dfrac{-2}{5}x-7\right)=0\)

\(\left(\dfrac{-2x}{5}+\dfrac{5\left(-7\right)}{5}\right)=0\)

\(\left(\dfrac{-2x-35}{5}\right)=0\)

\(-2x-35=0\)

\(-2x=0+35\)

\(x=-\dfrac{35}{2}\)

c) \(\dfrac{x}{8}=\dfrac{9}{4}\)

\(\Leftrightarrow x=\dfrac{9.8}{4}=\dfrac{72}{4}=18\)

\(x=18\)

d) \(\dfrac{x-3}{2}=\dfrac{18}{x-3}\)

\(x-3=18+2\)

\(x=20-3\)

\(x=17\)

e) \(4,5x-6,2x=6,12\)

\(\dfrac{9x}{2}-6,2.x=6,12\)

\(\dfrac{9x}{2}+\dfrac{-31x}{5}=6,12\)

\(\dfrac{5.9x}{10}+\dfrac{2\left(-31\right)x}{10}=6.12\)

\(\dfrac{45x-62x}{10}=6.12\)

\(=-17x\div10=6.12\)

\(-17x=10.6.12\)

\(x=-3,6\)

h) \(11,4-\left(x-3,4\right)=-16,2\)

\(x-3,4=-16,2+11,4\)

\(x-3,4=-4,8\)

\(x=-1,4\)

 

Ngân Lê Bảo
Xem chi tiết
Nguyễn Duy Khang
20 tháng 1 2021 lúc 16:47

undefined

Nguyễn Duy Khang
20 tháng 1 2021 lúc 16:31

\(a,\dfrac{3}{2x-1}+1=\dfrac{2x-1}{2x+1};ĐKXĐ:x\ne\pm\dfrac{1}{2}\\ \Leftrightarrow\dfrac{3}{2x-1}-\dfrac{2x-1}{2x+1}+1=0\\ \Leftrightarrow\dfrac{3\left(2x+1\right)}{\left(2x-1\right)\left(2x+1\right)}-\dfrac{\left(2x-1\right)\left(2x-1\right)}{\left(2x+1\right)\left(2x-1\right)}+\dfrac{\left(2x-1\right)\left(2x+1\right)}{\left(2x-1\right)\left(2x+1\right)}=0\\ \Rightarrow3\left(2x+1\right)-\left(2x-1\right)^2+\left(2x-1\right)\left(2x+1\right)=0\\ \Leftrightarrow6x+3-\left(4x^2-4x+1\right)+\left(4x^2-1\right)=0\\ \Leftrightarrow6x+3-4x^2+4x-1+4x^2-1=0\\ \Leftrightarrow10x+1=0\\ \Leftrightarrow10x=-1\\ \Leftrightarrow x=-\dfrac{1}{10}\)

Vậy \(x\in\left\{-\dfrac{1}{10}\right\}\)

nguyen ngoc son
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 2 2021 lúc 11:39

a) Ta có: \(\left(2x-3\right)^2=\left(2x-3\right)\left(x+1\right)\)

\(\Leftrightarrow\left(2x-3\right)^2-\left(2x-3\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left(2x-3\right)\left(2x-3-x-1\right)=0\)

\(\Leftrightarrow\left(2x-3\right)\left(x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-3=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=3\\x=4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=4\end{matrix}\right.\)

Vậy: \(S=\left\{\dfrac{3}{2};4\right\}\)

b) Ta có: \(x\left(2x-9\right)=3x\left(x-5\right)\)

\(\Leftrightarrow x\left(2x-9\right)-3x\left(x-5\right)=0\)

\(\Leftrightarrow x\left(2x-9\right)-x\left(3x-15\right)=0\)

\(\Leftrightarrow x\left(2x-9-3x+15\right)=0\)

\(\Leftrightarrow x\left(6-x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\6-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)

Vậy: S={0;6}

c) Ta có: \(3x-15=2x\left(x-5\right)\)

\(\Leftrightarrow3\left(x-5\right)-2x\left(x-5\right)=0\)

\(\Leftrightarrow\left(x-5\right)\left(3-2x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\3-2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\2x=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=\dfrac{3}{2}\end{matrix}\right.\)

Vậy: \(S=\left\{5;\dfrac{3}{2}\right\}\)

d) Ta có: \(\dfrac{5-x}{2}=\dfrac{3x-4}{6}\)

\(\Leftrightarrow6\left(5-x\right)=2\left(3x-4\right)\)

\(\Leftrightarrow30-6x=6x-8\)

\(\Leftrightarrow30-6x-6x+8=0\)

\(\Leftrightarrow-12x+38=0\)

\(\Leftrightarrow-12x=-38\)

\(\Leftrightarrow x=\dfrac{19}{6}\)

Vậy: \(S=\left\{\dfrac{19}{6}\right\}\)

e) Ta có: \(\dfrac{3x+2}{2}-\dfrac{3x+1}{6}=2x+\dfrac{5}{3}\)

\(\Leftrightarrow\dfrac{3\left(3x+2\right)}{6}-\dfrac{3x+1}{6}=\dfrac{12x}{6}+\dfrac{10}{6}\)

\(\Leftrightarrow6x+4-3x-1=12x+10\)

\(\Leftrightarrow3x+3-12x-10=0\)

\(\Leftrightarrow-9x-7=0\)

\(\Leftrightarrow-9x=7\)

\(\Leftrightarrow x=-\dfrac{7}{9}\)

Vậy: \(S=\left\{-\dfrac{7}{9}\right\}\)

Lê Hoàng Khánh
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 7 2021 lúc 14:40

a) Ta có: \(\dfrac{4}{5}-3\left|x\right|=\dfrac{1}{5}\)

\(\Leftrightarrow3\left|x\right|=\dfrac{4}{5}-\dfrac{1}{5}=\dfrac{3}{5}\)

\(\Leftrightarrow\left|x\right|=\dfrac{1}{5}\)

hay \(x\in\left\{\dfrac{1}{5};-\dfrac{1}{5}\right\}\)

b) Ta có: \(4x-\dfrac{1}{2}x+\dfrac{3}{5}x=\dfrac{4}{5}\)

nên \(\dfrac{41}{10}x=\dfrac{4}{5}\)

hay \(x=\dfrac{8}{41}\)

c) Ta có: \(\left(2x-8\right)\left(10-5x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-8=0\\10-5x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=8\\5x=10\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=2\end{matrix}\right.\)

d) Ta có: \(\dfrac{3}{4}+\dfrac{1}{4}\left|2x-1\right|=\dfrac{7}{2}\)

\(\Leftrightarrow\dfrac{1}{4}\left|2x-1\right|=\dfrac{7}{2}-\dfrac{3}{4}=\dfrac{14}{4}-\dfrac{3}{4}=\dfrac{11}{4}\)

\(\Leftrightarrow\left|2x-1\right|=11\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-1=11\\2x-1=-11\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=12\\2x=-10\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=-5\end{matrix}\right.\)

juihdfshd
Xem chi tiết
Trang Thùy
20 tháng 1 2019 lúc 21:38

a, \(6x^2-5x+3=2x-3x\left(3-2x\right)\)

\(6x^2-5x+3=2x-9x+6x^2\)

\(6x^2-5x+3-6x^2+9x-2x=0\)

\(2x+3=0\)

\(2x=-3\)

\(x=-\dfrac{3}{2}\)

Trang Thùy
20 tháng 1 2019 lúc 21:56

b, \(\dfrac{2\left(x-4\right)}{4}-\dfrac{3+2x}{10}=x+\dfrac{1-x}{5}\)

\(\dfrac{20\left(x-4\right)}{4.10}-\dfrac{4\left(3+2x\right)}{4.10}=\dfrac{5x}{5}+\dfrac{1-x}{5}\)

\(\dfrac{20x-80}{40}-\dfrac{12+8x}{40}=\dfrac{5x+1-x}{5}\)

\(\dfrac{20x-80-12-8x}{40}=\dfrac{4x+1}{5}\)

\(\dfrac{12x-92}{40}-\dfrac{4x+1}{5}=0\)

\(\dfrac{12x-92}{40}-\dfrac{8\left(4x+1\right)}{40}=0\)

\(12x-92-8\left(4x+1\right)=0\)

⇔ 12x - 92 - 32x - 8 = 0

⇔ -100 - 20x = 0

⇔ 20x = -100

⇔ x = -100 : 20

⇔ x = -5

Trang Thùy
20 tháng 1 2019 lúc 22:08

c, \(\dfrac{2x}{3}+\dfrac{3x-5}{4}=\dfrac{3\left(2x-1\right)}{2}-\dfrac{7}{6}\)

\(\dfrac{8x}{12}+\dfrac{9x-15}{12}=\dfrac{18x-9}{6}-\dfrac{7}{6}\)

\(\dfrac{17x-15}{12}=\dfrac{18x-16}{6}\)

\(\dfrac{17x-15}{12}-\dfrac{18x-16}{6}=0\)

\(\dfrac{17x-15}{12}-\dfrac{36x-32}{12}=0\)

⇔ 17x - 15 - 36 + 32 = 0

⇔ 17 - 19x = 0

⇔ 19x = 17

⇔ x = \(\dfrac{17}{19}\)

Bach Tang Oni
Xem chi tiết
ILoveMath
2 tháng 12 2021 lúc 20:58

\(a,=\dfrac{4x+8}{x^2+2x}=\dfrac{4\left(x+2\right)}{x\left(x+2\right)}=\dfrac{4}{x}\\ b,=\dfrac{\left(2x-3\right)-\left(2x-4\right)}{x-2}=\dfrac{2x-3-2x+4}{x-2}=\dfrac{1}{x-2}\\ c,=\dfrac{2x-1-3x-2}{x+3}=\dfrac{-x-3}{x+3}=\dfrac{-\left(x+3\right)}{x+3}=-1\\ d,=\dfrac{11x-18+x}{2x-3}=\dfrac{12x-18}{2x-3}=\dfrac{6\left(2x-3\right)}{2x-3}=6\)

\(e,=\dfrac{3x-6-9x+3}{2x+1}=\dfrac{-6x-3}{2x+1}=\dfrac{-3\left(2x+1\right)}{2x+1}=-3\)