Giup minh voi:cho x,y,z khac 0 va x^3y^3+y^3z^3+x^3z^3=3x^2y^2z^2.tinh P=(1+x/y)(1+y/z)(1+z/x)
Tim x, y, z:
1. 3x= 2y- 3z= 4z va x+ y- z= 46
2. 5x- 3y= 4y= 3z+ 10x va x+ y+ z= 28
3. 10x= 6y= 5z va x+ y- z= 24
4. 9x= 3y= 2z va x- y+ z= 50
3: 10x=6y=5z
\(\Leftrightarrow\dfrac{10x}{30}=\dfrac{6y}{30}=\dfrac{5z}{30}\)
hay x/3=y/5=z/6
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{6}=\dfrac{x+y-z}{3+5-6}=\dfrac{24}{2}=12\)
Do đó: x=36; y=60; z=72
4: Ta có: 9x=3y=2z
nên \(\dfrac{9x}{18}=\dfrac{3y}{18}=\dfrac{2z}{18}\)
hay x/2=y/6=z/9
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{y}{6}=\dfrac{z}{9}=\dfrac{x-y+z}{2-6+9}=\dfrac{50}{5}=10\)
Do đó: x=20; y=60; z=90
cho x,y,z là các số dương thoả mãn \(\dfrac{1}{x+y}+\dfrac{1}{y+z}+\dfrac{1}{z+x}\)=6
Chứng minh \(\dfrac{1}{3x+3y+2z}+\dfrac{1}{3x+2y+3z}+\dfrac{1}{2x+3y+3z}\)≤\(\dfrac{3}{2}\)
Áp dụng BĐT Cauchy-Schwarz:
\(\dfrac{1}{x+y}+\dfrac{1}{x+y}+\dfrac{1}{y+z}+\dfrac{1}{z+x}\ge\dfrac{16}{3x+3y+2z}\\ \Leftrightarrow\dfrac{1}{3x+2y+2z}\le\dfrac{1}{16}\left(\dfrac{2}{x+y}+\dfrac{1}{y+z}+\dfrac{1}{z+x}\right)\\ \Leftrightarrow\sum\dfrac{1}{3x+2y+2z}\le\dfrac{1}{16}\left(\dfrac{4}{x+y}+\dfrac{4}{y+z}+\dfrac{4}{z+x}\right)=\dfrac{4}{16}\cdot6=\dfrac{3}{2}\)
Dấu \("="\Leftrightarrow x=y=z=\dfrac{1}{3}\)
Cho xyz khác 0,x^3y^3+y^3z^3+z^3x^3=3x^2y^2z^2.tÍnh P=(1+x/y)(1+y/z)(1+z/x)
Đặt \(\left(xy;yz;zx\right)\rightarrow\left(a;b;c\right)\)
Ta có : \(abc=xy\cdot yz\cdot zx=x^2y^2z^2\)
Giả thiết tương đương với \(a^3+b^3+c^3=3abc\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)( cái này bạn tự chứng minh )
\(\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\\a=b=c\end{matrix}\right.\)
Đến đây xét 2 trường hợp rồi giải ra là xong.
Cho xyz khác 0 thỏa mãn: x^3y^3 + y^3z^3 + z^3x^3 = 3x^2y^2z^2
Tính giá trị của biểu thức: M = ( 1+ x/y )( 1 + y/z )( 1 + z/x )
3x²y²z² = x³y³ y³z³ z³x³
(3x²y²z²) / (x³y³ y³z³ z³x³) = 1
3.[(x²y²z²) / (x³y³ y³z³ z³x³)] = 1
(x²y²z²) / (x³y³ y³z³ z³x³) = 1/3
(x²y²z²) / (x³y³) (x²y²z²) / (y³z³) (x²y²z²) / (z³x³) = 1/3
z²/(xy) x/(yz) y²/(zx) = 1/3
Vậy x²/(yz) y²/(xz) z²/(xy) = 1/3
x,y,z>0 ; 1/x+y + 1/y+z + 1/z+x = 6
Tìm MaxP=1/(3x+3y+2z) + 1/(3x+2y+3z) + 1/(2x+2y+3z)
\(\frac{16}{3x+3y+2z}=\frac{16}{\left(x+y\right)+\left(x+y\right)+\left(x+z\right)+\left(y+z\right)}\le\frac{1}{x+y}+\frac{1}{x+y}+\frac{1}{x+z}+\frac{1}{y+z}\)
Tương tự:
\(\frac{16}{3x+2y+3z}\le\frac{1}{x+z}+\frac{1}{x+z}+\frac{1}{x+y}+\frac{1}{z+y}\)
\(\frac{16}{2x+3y+3z}\le\frac{1}{y+z}+\frac{1}{z+y}+\frac{1}{y+x}+\frac{1}{x+z}\)
\(\Rightarrow16P\le4\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)=4\cdot6=24\)
\(\Rightarrow P\le\frac{3}{2}\) tại \(x=y=z=\frac{1}{4}\)
Cho x, y, z>0. Chứng minh rằng:
\(\dfrac{x}{x+2y+3z}+\dfrac{y}{y+2z+3x}+\dfrac{z}{z+2x+3y}\ge\dfrac{1}{2}\)
\(VT=\dfrac{x^2}{x^2+2xy+3zx}+\dfrac{y^2}{y^2+2yz+3xy}+\dfrac{z^2}{z^2+2zx+3yz}\)
\(VT\ge\dfrac{\left(x+y+z\right)^2}{x^2+y^2+z^2+5xy+5yz+5zx}=\dfrac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2+3\left(xy+yz+zx\right)}\ge\dfrac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2+\left(x+y+z\right)^2}=\dfrac{1}{2}\)
Bài 3: Tìm x,y,z biết
a) x : y : z =4: 3 :9 và x - 3y + 4z = 62
c) x : y : z = 1 : 2 : 3 và 4x - 3y + 2z = 36
e) x : y : z = 2 : 3 : 4 và x + 2y - 3z = -20
g) x : y : (- z ) = 3 : 8 : 5 và 4x + 3y + 2z = 52
i) x : y : z = 3 : 5 : (-2) và 5x - y + 3z = 124
`#3107.101117`
a)
`x \div y \div z = 4 \div 3 \div 9`
`=> x/4 = y/3 = z/9`
`=> x/4 = (3y)/9 = (4z)/36`
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
`x/4 = (3y)/9 = (2z)/8 = (x - 3y + 4z)/(4 - 9 + 36) = 62/31 = 2`
`=> x/4 = y/3 = z/9 = 2`
`=> x = 4*2 = 8` $\\$ `y = 3*2 = 6` $\\$ `z = 9*2 = 18`
Vậy, `x = 8; y = 6; z = 18`
c)
\(x \div y \div z = 1 \div 2 \div 3\)
`=> x/1 = y/2 = z/3`
`=> (4x)/4 = (3y)/6 = (2z)/6`
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
`(4x)/4 = (3y)/6 = (2z)/6 = (4x - 3y + 2z)/(4 - 6 + 6) = 36/4 = 9`
`=> x/1 = y/2 = z/3 = 9`
`=> x = 1*9=9` $\\$ `y = 2*9 = 18` $\\$ `z = 3*9 = 27`
Vậy, `x = 9; y = 18; z = 27`
Các câu còn lại cậu làm tương tự nhé.
Cho x,y,z>0 và \(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}=6\)
Chứng minh \(\frac{1}{3x+3y+2z}+\frac{1}{3x+2y+3z}+\frac{1}{2x+3y+3z}\le\frac{3}{2}\)
Áp dụng \(\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\)
\(\frac{1}{3x+3y+2z}=\frac{1}{2\left(x+y\right)+\left(x+z\right)+\left(y+z\right)}\le\frac{1}{4}.\frac{1}{2\left(x+y\right)}+\frac{1}{4}.\frac{1}{x+z+y+z}\le\frac{1}{8\left(x+y\right)}+\frac{1}{4}.\frac{1}{4}\left(\frac{1}{x+z}+\frac{1}{y+z}\right)\)
Cho x, y, z dương thỏa mãn: \(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{x+z}=6\)
Chứng minh: \(\frac{1}{3x+3y+2z}+\frac{1}{3x+2y+3z}+\frac{1}{2x+3y+3z}\le\frac{3}{2}\)
Áp dụng bất đẳng thức \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\ge\frac{\left(1+1+1+1\right)^2}{a+b+c+d}=\frac{16}{a+b+c+d}\)ta có :
\(\frac{16}{3x+3y+2z}\le\frac{1}{x+y}+\frac{1}{x+y}+\frac{1}{x+z}+\frac{1}{y+z}\)
\(\frac{16}{3x+2y+3z}\le\frac{1}{x+z}+\frac{1}{x+z}+\frac{1}{x+y}+\frac{1}{y+z}\)
\(\frac{16}{2x+3y+3z}\le\frac{1}{y+z}+\frac{1}{y+z}+\frac{1}{x+y}+\frac{1}{x+z}\)
Cộng theo vế 3 đẳng thức trên ta được :
\(16.\left(\frac{1}{3x+3y+2z}+\frac{1}{3x+2y+3z}+\frac{1}{2x+3y+3z}\right)\)
\(\le4.\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)=4.6=24\)
\(\Rightarrow\)\(\frac{1}{3x+3y+2z}+\frac{1}{3x+2y+3z}+\frac{1}{2x+3y+3z}\le\frac{3}{2}\)
Câu hỏi của NGUYỄN DOÃN ANH THÁI - Toán lớp 9 - Học toán với OnlineMath
Câu hỏi của NGUYỄN DOÃN ANH THÁI - Toán lớp 9 - Học toán với OnlineMath