cho tam giác ABC nhọn. đường cao AH và trung tuyến AM không trùng nhau. gọi N là trung điểm của AB. cho biết \(\widehat{BAH}=\widehat{CAM}\). CMR: AMHN nội tiếp
tính \(\widehat{BAC}\)
Cho tam giác ABC có góc B,c là các góc nhọn. Đường cao AH và trung tuyến AM biết góc BAH = góc MAC.
a) Gọi E là trung điểm của AB. CMr AEHM là tứ giác nội tiếp.
b) Tính góc BAC
Cho \(\Delta ABC\)có \(\widehat{B}\), \(\widehat{C}\)nhọn, đường cao AH, trung tuyến AM không trùng nhau. Cho biết \(\widehat{BAH}=\widehat{MAC}\). Tính \(\widehat{BAC}\).
(Chẳng biết đề có sai ko nữa?)
Bây giờ vẽ đường tròn tâm \(O\) ngoại tiếp tam giác \(ABC\) và cho 2 tia tiếp tuyến tại \(B\) và \(C\) của đường tròn gặp nhau tại \(K\).
Khi đó, \(\widehat{BAK}=\widehat{MAC}\) tức là \(AH\) trùng với \(AK\) hoặc 2 tia này đối xứng nhau qua \(AB\).
Ta sẽ CM khả năng thứ 2 vô lí như sau: Theo gt thì \(\widehat{CAH}=\widehat{MAB}\) nên hoàn toàn tương tự (đổi chỗ \(B,C\)) sẽ có \(AH,AK\) đối xứng qua \(AC\) (mâu thuẫn với khả năng thứ 2).
Vậy \(AH\) trùng với \(AK\). Nhưng như vậy thì tam giác này cân nên (???)
À ừ nhỉ, giờ mới phát hiện ra lỗi của bài lúc đầu.
Đó là khi \(\widehat{ABC}\ne90^o\) thì 2 tiếp tuyến mới cắt nhau. Và khi đó thì vô lí.
Còn khi \(\widehat{ABC}=90^o\) thì điều kiện đề bài thoả.
Cho \(\Delta ABC\) nhọn (AB<AC) nội tiếp đường tròn (O). các đường cao BE, CF cắt nhau tại H. Gọi D là giao điểm của AH và BC. Tiếp tuyến tại A của (O) cắt BC tại F
a) Chứng minh tứ giác AEHF nội tiếp và \(\widehat{EAH}=\widehat{EBC}\)
b) Đường kính AK của (O) cắt EF tại M, cắt BC tại N. Tiếp tuyến tại K của (O) cắt AH tại Q. Chứng minh HM // QN
c) Gọi I là trung điểm BC. Đường tròn đường kính AH cắt AI tại P. Chứng minh SA = SP
a: góc AEH+góc AFH=180 độ
=>AEHF nội tiếp
góc EAH+góc ACB=90 độ
góc EBC+góc ACB=90 độ
=>góc EAH=góc EBC
b: AK cắt EF tại M
AK cắt BC tại N
AH cắt (O) tại K
=>HM//AB và QN//AB
=>HM//QN
Cho tam giác ABC nội tiếp (O). Tiếp tuyến tại A cắt BC tại T. Vẽ TN là tiếp tuyến của (O). M là trung điểm BC.
a)CMR \(\widehat{BAN}=\widehat{CAM}\)
b) Kẻ CK vuông góc AN. Vẽ đường cao AD và CF của tam giác ABC. Chứng minh DK đi qua trung điểm BF
Hình vẽ:(không chắc nó có hiện ra hay k bạn thông cảm)Câu a)
Dễ chứng minh ATNO là tứ giác nội tiếp
Đồng thời MB=MC nên OM vuông góc BC hay OMNT là tứ giác nội tiếp
Suy ra: A,O,M,N,T cùng thuộc một đường tròn(đường kính OT)
Có OMNT là tứ giác nội tiếp suy ra: \(\widehat{BMN}=\widehat{TON}\)
Mà \(\widehat{TON}=\widehat{TAN}=\widehat{TNA}\)
Cho nên: \(\widehat{BMN}=\widehat{TNA}\)
Hơn nữa: \(\widehat{TNA}=\widehat{ACN}\)(cùng bằng một nửa số đo cung ABN)
\(\Rightarrow\widehat{BMN}=\widehat{ACN}\)
Xét tam giác BMN và tam giác ACN có: \(\hept{\begin{cases}\widehat{BMN}=\widehat{ACN}\\\widehat{MBN}=\widehat{CAN}\end{cases}}\)
Do đó: \(\Delta BMN~\Delta ACN\left(g.g\right)\)\(\Rightarrow\frac{BN}{AN}=\frac{MB}{AC}=\frac{MC}{AC}\)
Chứng minh tiếp \(\Delta ABN~\Delta AMC\left(c.g.c\right)\)từ tỉ số trên và \(\widehat{ANB}=\widehat{ACM}\)
Vậy \(\widehat{BAN}=\widehat{CAM}\)
___________________________________________________________________________________________________________
Câu b) Hình vẽ cho câu b): (không hiện ra thì bn thông cảm do paste từ GeoGebra ra)
Gọi giao DK cắt BF tại P
Ta có: \(\Delta TNB~\Delta TCN\)\(\Rightarrow\frac{TN}{TC}=\frac{NB}{CN}\)
Tương tự: \(\Delta TAB~\Delta TCA\)\(\Rightarrow\frac{TA}{TC}=\frac{AB}{AC}\)
Do TA=TN nên \(\frac{NB}{NC}=\frac{AB}{AC}\)(1)
Lại có: ADKC là tứ giác nội tiếp \(\Rightarrow\widehat{BNA}=\widehat{BCA}=\widehat{DKA}\Rightarrow BN//KP\)
\(\Delta FPD~\Delta NBA\Rightarrow\frac{PF}{NB}=\frac{PD}{AB}\)(2)(bn tự CM)
\(\Delta DBP~\Delta ANC\Rightarrow\frac{PB}{NC}=\frac{PD}{AC}\)(3)(bn tự CM)
Từ (1);(2) và (3) suy ra đpcm
P/s: Bài làm dài quá mik làm biếng không check lại nên có thể có sai sót nha.
1) cho tam giác vuông ABC đường cao AH .gọi AD ;AE là phân giác các góc BAH và góc CAH .chứng minh rằng đường tròn nội tiếp tam giác BCA trùng với đường tròn ngoại tiếp tam giác ADE
2)cho tam giác ABC vuông tại A;gọi I là tâm đường tròn nội tiếp tam giác ABC ;các tiếp điểm trên BC;CA;AB lần lượt là D,E,F.gọi M là trung điểm của AC ,đường thẳng MI cắt các cạnh AB tại N ,đường thẳng DF cắt đường cao AH tại P .cmr tam giác APN cân
Cho tam giác ABC(AB<AC) có ba góc nhọn.
a)Chứng minh trung tuyến AM nhỏ hơn nửa tổng hai cạnh AB và AC.
b)Chứng minh \(\widehat{CAm}< \widehat{BAM}\)
c) Tia phân giác AD nằm giữa đường cao AH và trung tuyến AM
Cho ΔABC có AB>AC. Vẽ đường cao AH, phân giác AD, trung tuyến AM. CMR: \(\widehat{BAH}< \widehat{BAD}< \widehat{BAM}\)
Kết hợp với hình vẽ của mình trong đầu và hình vẽ của Nguyễn Thanh Hằng thì đề bài có chút ngược ngược.
Nếu là chứng minh như thế này thì đúng hơn!
Cho tam giác ABC có góc B và góc C nhọn. Vẽ đường cao AH, trung tuyến AM sao cho góc BAH = góc MAC = 40 độ. Gọi E là trung điểm AB, ta được góc EMA=... độ
Cho tam giác ABC có AB<AC có trung tuyến AM, đường cao AH. Biết \(\widehat{BAH}=\widehat{HAM}=\widehat{MAC}\) . Tính các góc tam giác ABC