Rút gọn biểu thức: \(\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
Rút gọn biểu thức sau
\(a.\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{4}}{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}\)
\(b.\dfrac{\sqrt{\dfrac{5}{3}}+\sqrt{\dfrac{3}{5}}-2}{\sqrt{\dfrac{5}{3}}-\sqrt{\dfrac{3}{5}}}\)
a: \(\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{4}}{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}\)
\(=\dfrac{\sqrt{2}+\sqrt{3}+2}{\sqrt{2}+\sqrt{3}+2+2+\sqrt{6}+\sqrt{8}}\)
\(=\dfrac{1}{\sqrt{2}+1}=\sqrt{2}-1\)
rút gọn biểu thức :
A= \(\dfrac{\sqrt{4+\sqrt{3}}+\sqrt{4-\sqrt{3}}}{\sqrt{4+\sqrt{13}}}+\sqrt{27-10\sqrt{2}}\).
B= \(\dfrac{\sqrt{2-\sqrt{3}}+\sqrt{4-\sqrt{15}}+\sqrt{10}}{\sqrt{23-3\sqrt{5}}}\).
C= \(\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\).
Ta có: \(C=\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{4}+\sqrt{4}+\sqrt{6}+\sqrt{8}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\dfrac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)\left(1+\sqrt{2}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=1+\sqrt{2}\)
Ta có: \(B=\dfrac{\sqrt{2-\sqrt{3}}+\sqrt{4-\sqrt{15}}+\sqrt{10}}{\sqrt{23-3\sqrt{5}}}\)
\(=\dfrac{\sqrt{4-2\sqrt{3}}+\sqrt{8-2\sqrt{15}}+2\sqrt{5}}{3\sqrt{5}-1}\)
\(=\dfrac{\sqrt{3}-1+\sqrt{5}-\sqrt{3}+2\sqrt{5}}{3\sqrt{5}-1}\)
=1
rút gọn các biểu thức sau:
a \(\sqrt[3]{8\sqrt{5}-16}.\sqrt[3]{8\sqrt{5}+16}\)
b \(\sqrt[3]{7-5\sqrt{2}}-\sqrt[6]{8}\)
c \(\sqrt[3]{4}.\sqrt[3]{1-\sqrt{3}}.\sqrt[6]{4+2\sqrt{3}}\)
d \(\dfrac{2}{\sqrt[3]{3}-1}-\dfrac{4}{\sqrt[3]{9}-\sqrt[3]{3}+1}\)
`c)root{3}{4}.root{3}{1-sqrt3}.root{6}{(sqrt3+1)^2}`
`=root{3}{4(1-sqrt3)}.root{3}{1+sqrt3}`
`=root{3}{4(1-sqrt3)(1+sqrt3)}`
`=root{3}{4(1-3)}=-2`
`d)2/(root{3}{3}-1)-4/(root{9}-root{3}{3}+1)`
`=(2(root{3}{9}+root{3}{3}+1))/(3-1)-(4(root{3}{3}+1))/(3+1)`
`=root{3}{9}+root{3}{3}+1-root{3}{3}-1`
`=root{3}{9}`
`a)root{3}{8sqrt5-16}.root{3}{8sqrt5+16}`
`=root{3}{(8sqrt5-16)(8sqrt5+16)}`
`=root{3}{320-256}`
`=root{3}{64}=4`
`b)root{3}{7-5sqrt2}-root{6}{8}`
`=root{3}{1-3.sqrt{2}+3.2.1-2sqrt2}-root{6}{(2)^3}`
`=root{3}{(1-sqrt2)^3}-sqrt2`
`=1-sqrt2-sqrt2=1-2sqrt2`
rút gọn các biểu thức sau
\(\dfrac{6+4\sqrt{2}}{\sqrt{2}+\sqrt{6+4\sqrt{2}}}\)+\(\dfrac{6-4\sqrt{2}}{\sqrt{2}-\sqrt{6-4\sqrt{2}}}\)
\(\dfrac{\sqrt{3}}{1-\sqrt{\sqrt{3}+1}}\)+\(\dfrac{\sqrt{3}}{1+\sqrt{\sqrt{3}+1}}\)
a: \(=\dfrac{6+4\sqrt{2}}{\sqrt{2}+2+\sqrt{2}}+\dfrac{6-4\sqrt{2}}{\sqrt{2}-2+\sqrt{2}}\)
\(=\dfrac{6+4\sqrt{2}}{2+2\sqrt{2}}+\dfrac{6-4\sqrt{2}}{2\sqrt{2}-2}\)
\(=\dfrac{3+2\sqrt{2}}{\sqrt{2}+1}+\dfrac{3-2\sqrt{2}}{\sqrt{2}-1}\)
=căn 2+1+căn 2-1=2căn 2
b: \(=\dfrac{\sqrt{3}+\sqrt{3+\sqrt{3}}+\sqrt{3}-\sqrt{3+\sqrt{3}}}{1-\sqrt{3}-1}=\dfrac{-2\sqrt{3}}{\sqrt{3}}=-2\)
Rút gọn biểu thức.
a) \(\sqrt{\dfrac{7-4\sqrt{3}}{\sqrt{3}-2}}\)
b) \(\sqrt{\dfrac{5-2\sqrt{6}}{\sqrt{3}-\sqrt{2}}}\)
a: Sửa đề: \(\dfrac{\sqrt{7-4\sqrt{3}}}{\sqrt{3}-2}\)
\(=\dfrac{\sqrt{\left(2-\sqrt{3}\right)^2}}{\sqrt{3}-2}=\dfrac{2-\sqrt{3}}{\sqrt{3}-2}\)
=-1
b: Sửa đề: \(\dfrac{\sqrt{5-2\sqrt{6}}}{\sqrt{3}-\sqrt{2}}\)
\(=\dfrac{\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}}{\sqrt{3}-\sqrt{2}}=\dfrac{\sqrt{3}-\sqrt{2}}{\sqrt{3}-\sqrt{2}}\)
=1
Rút gọn các biểu thức sau :
a,\(\dfrac{\sqrt{6}+\sqrt{10}}{\sqrt{21}+\sqrt{35}}\)
b,\(\dfrac{\sqrt{405}+3\sqrt{27}}{3\sqrt{3}+\sqrt{45}}\)
c,\(\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{4}-\sqrt{6}-\sqrt{9}-\sqrt{12}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
d, D=\(\dfrac{2}{x^2-y^2}\cdot\sqrt{\dfrac{9\left(x^2+2xy+y^2\right)}{4}}\) \(\left(vớix\ne y,x\ne-y\right)\)
d: \(D=\dfrac{2}{x^2-y^2}\cdot\sqrt{\dfrac{9\left(x^2+2xy+y^2\right)}{4}}\)
\(=\dfrac{2}{\left(x-y\right)\left(x+y\right)}\cdot\dfrac{3\left(x+y\right)}{2}\)
\(=\dfrac{3}{x-y}\)
Rút gọn các biểu thức sau:
a. \(\dfrac{8}{\left(\sqrt{5}+\sqrt{3}\right)^2}\) - \(\dfrac{8}{\left(\sqrt{5}-\sqrt{3}\right)^2}\)
b.\(\dfrac{1}{4-3\sqrt{2}}\) - \(\dfrac{1}{4+3\sqrt{2}}\)
c.\(\left(\dfrac{\sqrt{7}+3}{\sqrt{7}-3}-\dfrac{\sqrt{7}-3}{\sqrt{7}+3}\right)\): \(\sqrt{28}\)
d.\(\dfrac{3}{\sqrt{6}-\sqrt{3}}\)+\(\dfrac{4}{\sqrt{7}+\sqrt{3}}\)
a: Ta có: \(\dfrac{8}{\left(\sqrt{5}+\sqrt{3}\right)^2}-\dfrac{8}{\left(\sqrt{5}-\sqrt{3}\right)^2}\)
\(=\dfrac{8}{8+2\sqrt{15}}-\dfrac{8}{8-2\sqrt{15}}\)
\(=\dfrac{64-16\sqrt{15}-64-16\sqrt{15}}{4}\)
\(=\dfrac{-32\sqrt{15}}{4}=-8\sqrt{15}\)
b: Ta có: \(\dfrac{1}{4-3\sqrt{2}}-\dfrac{1}{4+3\sqrt{2}}\)
\(=\dfrac{4+3\sqrt{2}-4+3\sqrt{2}}{-2}\)
\(=-\dfrac{6\sqrt{2}}{2}=-3\sqrt{2}\)
b) \(\dfrac{1}{4-3\sqrt{2}}-\dfrac{1}{4+3\sqrt{2}}=\dfrac{4+3\sqrt{2}-4+3\sqrt{2}}{\left(4-3\sqrt{2}\right)\left(4+3\sqrt{2}\right)}=\dfrac{6\sqrt{2}}{-2}=-3\sqrt{2}\)
c) \(\left(\dfrac{\sqrt{7}+3}{\sqrt{7}-3}-\dfrac{\sqrt{7}-3}{\sqrt{7}+3}\right):\sqrt{28}=\dfrac{\left(\sqrt{7}+3\right)^2-\left(\sqrt{7}-3\right)^2}{\left(\sqrt{7}-3\right)\left(\sqrt{7}+3\right)}:\sqrt{28}=\dfrac{16+6\sqrt{7}-16+6\sqrt{7}}{7-9}=\dfrac{12\sqrt{7}}{-2}=-6\sqrt{7}\)
bài 1 rút gọn biểu thức sau:
a)\(\sqrt{16+6\sqrt{7}}\)- \(\sqrt{8-2\sqrt{7}}\) b)K=\(\dfrac{\sqrt{4-2\sqrt{3}}}{\sqrt{6}-\sqrt{2}}\)
c)\(\sqrt{60-24\sqrt{6}}\)+\(\sqrt{40-16\sqrt{6}}\) d)B=(3+\(\sqrt{3}\))\(\sqrt{12-6\sqrt{13}}\)
e)\(\sqrt{6-4\sqrt{2}}\)-\(\sqrt{\left(\sqrt{2}-\sqrt{6}\right)^2}\)
bài 2 cho biểu thức A=\(\left(\dfrac{\sqrt{x}}{\sqrt{x}+3}+\dfrac{3}{\sqrt{x}-3}\right).\dfrac{\sqrt{x}+3}{x+9}\)( với x≥0 và x≠ 9)
a) rút gọn biểu thức A
b) tính giá trị biểu thức\(x=4+2\sqrt{3}\)
\(1,\\ a,=\sqrt{\left(3+\sqrt{7}\right)^2}-\sqrt{\left(\sqrt{7}-1\right)^2}=3+\sqrt{7}-\sqrt{7}+1=4\\ b,K=\dfrac{\sqrt{\left(\sqrt{3}-1\right)^2}}{\sqrt{2}\left(\sqrt{3}-1\right)}=\dfrac{\sqrt{3}-1}{\sqrt{2}\left(\sqrt{3}-1\right)}=\dfrac{1}{\sqrt{2}}=\dfrac{\sqrt{2}}{2}\\ c,=\sqrt{\left(6-2\sqrt{6}\right)^2}+\sqrt{\left(2\sqrt{6}-4\right)^2}=6-2\sqrt{6}+2\sqrt{6}-4=2\\ e,=\sqrt{\left(2-\sqrt{2}\right)^2}-\left(\sqrt{6}-\sqrt{2}\right)=2-\sqrt{2}-\sqrt{6}+\sqrt{2}=2-\sqrt{6}\)
\(2,\\ a,A=\dfrac{x-3\sqrt{x}+3\sqrt{x}+9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\dfrac{\sqrt{x}+3}{x+9}\\ A=\dfrac{x+9}{\left(\sqrt{x}-3\right)\left(x+9\right)}=\dfrac{1}{\sqrt{x}-3}\\ b,x=4+2\sqrt{3}\Leftrightarrow\sqrt{x}=\sqrt{3}+1\\ \Leftrightarrow A=\dfrac{1}{\sqrt{3}+1-3}=\dfrac{1}{\sqrt{3}+2}=2-\sqrt{3}\)
Rút gọn biểu thức sau: \(\sqrt{9-3\sqrt{8}}\) - \(\dfrac{\sqrt{3}-1}{\sqrt{2}}\) + \(\sqrt{5-2\sqrt{6}}\) - \(\sqrt{2-\sqrt{3}}\)
\(\sqrt{9-3\sqrt{8}}-\dfrac{\sqrt{3}-1}{\sqrt{2}}+\sqrt{5-2\sqrt{6}}-\sqrt{2-\sqrt{3}}\)
\(=\sqrt{\left(\sqrt{6}\right)^2-2.\sqrt{6}.\sqrt{3}+\left(\sqrt{3}\right)^2}-\dfrac{\sqrt{6}-\sqrt{2}}{2}+\sqrt{\left(\sqrt{3}\right)^2-2.\sqrt{3}.\sqrt{2}+\left(\sqrt{2}\right)^2}-\dfrac{\sqrt{6}-\sqrt{2}}{2}\)
\(=\sqrt{\left(\sqrt{6}-\sqrt{3}\right)^2}-\sqrt{6}+\sqrt{2}+\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}\)
\(=\left|\sqrt{6}-\sqrt{3}\right|-\sqrt{6}+\sqrt{2}+\left|\sqrt{3}-\sqrt{2}\right|\)
\(=\sqrt{6}-\sqrt{3}-\sqrt{6}+\sqrt{2}+\sqrt{3}-\sqrt{2}\) (do \(\sqrt{6}-\sqrt{3}>0;\sqrt{3}-\sqrt{2}>0\))
\(=0\)
\(=\sqrt{9-6\sqrt{2}}-\dfrac{\sqrt{6}-\sqrt{2}}{2}+\sqrt{3}-\sqrt{2}-\dfrac{1}{\sqrt{2}}\left(\sqrt{3}-1\right)\)
\(=\sqrt{6}-\sqrt{3}-\dfrac{1}{2}\sqrt{6}+\dfrac{1}{2}\sqrt{2}+\sqrt{3}-\sqrt{2}-\dfrac{1}{2}\sqrt{6}+\dfrac{1}{2}\sqrt{2}\)
\(=0\)
\(\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
rút gọnnn biểu thức trên ạ
\(\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
= \(\dfrac{\left(\sqrt{2}+\sqrt{3}+2\right)+\left(\sqrt{6}+\sqrt{8}+2\right)}{\sqrt{2}+\sqrt{3}+2}\)
= \(\dfrac{\left(\sqrt{2}+\sqrt{3}+2\right)+\sqrt{2}\left(\sqrt{3}+2+\sqrt{2}\right)}{\left(\sqrt{2}+\sqrt{3}+2\right)}\)
= \(\dfrac{\left(\sqrt{2}+\sqrt{3}+2\right)\times\left(1+\sqrt{2}\right)}{\left(\sqrt{2}+\sqrt{3}+2\right)}\)
= 1 + \(\sqrt{2}\)