Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hang Nguyen
Xem chi tiết
Akai Haruma
24 tháng 7 2021 lúc 0:09

Bạn tham khảo lời giải tại đây:

https://olm.vn/hoi-dap/detail/81621153379.html

Lê Phương Linh
Xem chi tiết
Nguyễn Đăng Nhân
10 tháng 10 2023 lúc 14:08

a) \(3\cdot24^{10}=3\cdot6^{10}\cdot4^{10}=3\cdot3^{10}\cdot2^{10}\cdot2^{20}\)

\(=3^{11}\cdot2^{30}\)

\(4^{30}=2^{30}\cdot2^{30}=2^{30}\cdot4^{15}\)

Ta có \(4^{15}>3^{15}>3^{11}\) nên \(4^{15}>3^{11}\)

Khi đó \(4^{15}\cdot2^{30}>3^{11}\cdot2^{30}\) hay \(4^{30}>3\cdot24^{10}\)

b) \(\dfrac{3}{1^2\cdot2^2}+\dfrac{5}{2^2\cdot3^2}+...+\dfrac{19}{9^2\cdot10^2}\)

\(=\dfrac{3}{1\cdot4}+\dfrac{5}{4\cdot9}+...+\dfrac{19}{81\cdot100}\)

\(=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{9}+...+\dfrac{1}{81}-\dfrac{1}{100}\)

\(=1-\dfrac{1}{100}=\dfrac{99}{100}< 1\)

Vậy dãy trên nhỏ hơn 1

Nguyễn Ngọc Anh Minh
10 tháng 10 2023 lúc 14:11

a/

\(4^{30}=\left(2^2\right)^{30}=2^{60}=2^{30}.2^{30}=\left(2^2\right)^{15}.2^{30}=4^{15}.2^{30}\)

\(3.24^{10}=3.3^{10}.\left(2^3\right)^{10}=3^{11}.2^{30}< 3^{15}.2^{30}\)

\(\Rightarrow4^{30}=4^{15}.2^{30}>3^{15}.2^{30}>3^{11}.2^{30}=3.24^{10}\)

b/

\(=\dfrac{2^2-1^2}{1^2.2^2}+\dfrac{3^2-2^2}{2^2.3^2}+\dfrac{4^2-3^2}{3^2.4^2}+...+\dfrac{10^2-9^2}{9^2.10^2}=\)

\(=1-\dfrac{1}{2^2}+\dfrac{1}{2^2}-\dfrac{1}{3^2}+\dfrac{1}{3^2}-\dfrac{1}{4^2}+...+\dfrac{1}{9^2}-\dfrac{1}{10^2}=\)

\(=1-\dfrac{1}{10^2}< 1\)

 

Kiều Vũ Linh
10 tháng 10 2023 lúc 14:13

a) 4³⁰ = (2²)³⁰ = 2⁶⁰ = 2³⁰.2³⁰ = 1073741824.2³⁰

3.24¹⁰ = 3.(3.2³)¹⁰ = 3.3¹⁰.2³⁰ = 3¹¹.2³⁰ = 177147.2³⁰

Do 1073741824 > 177147

⇒ 1073741824.2³⁰ > 177147.2³⁰

Vậy 4³⁰ > 3.24¹⁰

b) 3/(1².2²) + 5/(2².3²) + ... + 19/(9².10²)

= 1/1² - 1/2² + 1/2² - 1/3² + ... + 1/9² - 1/10²

= 1 - 1/100

= 99/100

Mà 99/100 < 1

⇒ 3/(1².2²) + 5/(2².3²) + 7/(3².4²) + ... + 19/(9².10²) < 1

Xem chi tiết
dream XD
Xem chi tiết
Lê Thị Thục Hiền
2 tháng 7 2021 lúc 8:55

\(\dfrac{3}{1^2.2^2}+\dfrac{5}{2^2.3^2}+\dfrac{7}{3^2.4^2}+...+\dfrac{19}{9^2.10^2}\)

\(=\dfrac{3}{1.4}+\dfrac{5}{4.9}+\dfrac{7}{9.16}+...+\dfrac{19}{81.100}\)

\(=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{16}+...+\dfrac{1}{81}-\dfrac{1}{100}\)

\(=1-\dfrac{1}{100}< 1\left(dpcm\right)\) 

Trương Minh Quang
10 tháng 10 2022 lúc 18:49

CS AI XEM S** KO

ANH HOÀNG
Xem chi tiết
Lấp La Lấp Lánh
30 tháng 9 2021 lúc 21:37

\(\dfrac{3}{1^2.2^2}+\dfrac{5}{2^2.3^2}+\dfrac{7}{3^2.4^2}+...+\dfrac{19}{9^2.10^2}\)

\(=\dfrac{3}{1.4}+\dfrac{5}{4.9}+\dfrac{7}{9.16}+...+\dfrac{19}{81.100}\)\(=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{16}+...+\dfrac{1}{81}-\dfrac{1}{100}\)

\(=1-\dfrac{1}{100}< 1\)

Sir Nghi
Xem chi tiết
Trịnh Đức Thịnh
Xem chi tiết
 Mashiro Shiina
6 tháng 11 2017 lúc 20:18

\(A=\dfrac{3}{1^2.2^2}+\dfrac{5}{2^2.3^2}+\dfrac{7}{3^2.4^2}+...+\dfrac{19}{9^2.10^2}\)

\(A=\dfrac{2^2-1^2}{1^2.2^2}+\dfrac{3^2-2^2}{2^2.3^2}+\dfrac{4^2-3^2}{3^2.4^2}+...+\dfrac{10^2-9^2}{9^2.10^2}\)

\(A=\dfrac{2^2}{1^2.2^2}-\dfrac{1^2}{1^2.2^2}+\dfrac{3^2}{2^2.3^2}-\dfrac{2^2}{2^2.3^2}+...+\dfrac{10^2}{9^2.10^2}-\dfrac{9^2}{9^2.10^2}\)\(A=1-\dfrac{1}{2^2}+\dfrac{1}{2^2}-\dfrac{1}{3^2}+...+\dfrac{1}{9^2}-\dfrac{1}{10^2}\)

\(A=1-\dfrac{1}{10^2}< 1\left(đpcm\right)\)

Shizadon
6 tháng 11 2017 lúc 20:21

A=\(\dfrac{1}{1^2}-\dfrac{1}{2^2}+\dfrac{1}{2^2}-\dfrac{1}{3^2}+....+\dfrac{1}{9^2}-\dfrac{1}{10^2}\)

A = \(\dfrac{1}{1^2}-\dfrac{1}{10^2}\)

A = \(1-\dfrac{1}{10^2}\) < 1

Vậy A < 1

Roger Federer
Xem chi tiết
Linh Lưu
Xem chi tiết
 Mashiro Shiina
15 tháng 8 2017 lúc 21:33

\(\dfrac{3}{1^2.2^2}+\dfrac{5}{2^2.3^2}+\dfrac{7}{3^2.4^2}+...+\dfrac{19}{9^2.10^2}\)

\(=\left(\dfrac{1}{1^2}-\dfrac{1}{2^2}\right)+\left(\dfrac{1}{2^2}-\dfrac{1}{3^2}\right)+\left(\dfrac{1}{3^2}-\dfrac{1}{4^2}\right)+...+\left(\dfrac{1}{9^2}-\dfrac{1}{100^2}\right)\)

\(=\dfrac{1}{1^2}-\dfrac{1}{2^2}+\dfrac{1}{2^2}-\dfrac{1}{3^2}+\dfrac{1}{3^2}-\dfrac{1}{4^2}+...+\dfrac{1}{9^2}-\dfrac{1}{10^2}\)

\(=\dfrac{1}{1}-\dfrac{1}{100}\)

\(=\dfrac{99}{100}\)

Nguyễn Huy Tú
15 tháng 8 2017 lúc 21:38

\(\dfrac{3}{1^2.2^2}+\dfrac{5}{2^2.3^2}+...+\dfrac{19}{9^2.10^2}\)

\(=\dfrac{3}{1.4}+\dfrac{5}{4.9}+...+\dfrac{19}{81.100}\)

\(=\dfrac{1}{1}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{9}+...+\dfrac{1}{81}-\dfrac{1}{100}\)

\(=1-\dfrac{1}{100}=\dfrac{99}{100}\)