Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Thiên Ngọc Tú
Xem chi tiết
Thảo Nguyễn Karry
4 tháng 11 2017 lúc 21:18

Ta có :

<=> u3 - 3u - 2 \(\le\) v3 - 3v + 2 <=> ( u + 1 )2( u - 2 ) \(\le\) ( v - 1 )2( v + 2 )

Đặt x = u + 1 , y = v -1 thì :

BĐT <=> x3 - 3x2 \(\le\) y3 + 3y2 <=> x3 - y3 \(\le\) 3(x2 + y2)

Ta có : x - y = ( u - v ) + 2 \(\le\)2

=> ( x - y ) ( x2 + xy + y2 ) \(\le\)2( x2 + xy + y2) = 2(x2 + y2) + 2xy \(\le\) 2(x2 + y2) + ( x2 + y2 ) = 3(x2 + y2 ) => x3 - y3 \(\le\) 3(x2 +y2 ) ( đpcm)

Dấu bằng xảy ra khi <=> x = y = 0 <=> u = -1 ; v = 1

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
26 tháng 2 2018 lúc 18:01

Nkok limaka
Xem chi tiết
Clgt
1 tháng 12 2019 lúc 0:02
https://i.imgur.com/W8qgA7n.gif
Khách vãng lai đã xóa
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
26 tháng 4 2017 lúc 8:22

Gợi ý: u – uv + v – v 2  = (1 – v)(u + z).

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
26 tháng 9 2019 lúc 8:16

Thực hiện phép nhân đa thức với đa thức ở vế trái

a) VT = 3 u 2  + 9u + 27 – ( u 3  – 32 u 2  + 9u) = 27 –  u 3  = VP (đpcm).

b) VT = ( t 2  – 4)( t 2  + 4) =  t 4  – 16 = VP. (đpcm).

Lâm Ánh Yên
Xem chi tiết
Nguyễn Việt Lâm
5 tháng 8 2021 lúc 17:23

\(\left|\sqrt{3}sinx+cosx\right|=2\left|\dfrac{\sqrt{3}}{2}sinxx+\dfrac{1}{2}cosx\right|=2\left|sin\left(x+\dfrac{\pi}{6}\right)\right|\le2\)

Đề bài sai 

Nguyễn Như Quỳnh
Xem chi tiết
Đạt TL
27 tháng 4 2019 lúc 20:00

\(\left(a^2-1\right)^2\ge0\)

\(\Leftrightarrow a^4-2a^2+1\ge0\)

\(\Leftrightarrow a^4+1\ge2a^2\)

\(\Leftrightarrow1.\left(a^4+1\right)\ge2a^2\)

\(\Leftrightarrow\frac{1}{2}\ge\frac{a^2}{a^4+1}\) (đpcm)

Lê Minh Quang
27 tháng 4 2019 lúc 20:04

\(\frac{a^2}{a^4+1}\le\frac{1}{2}\)

\(\Leftrightarrow a^4+1\ge2a^2\)                                     (1)

Mà theo BĐT Cauchy có

\(a^4+1\ge2\sqrt{a^4}\)

\(\Leftrightarrow a^4+1\ge2a^2\)

Suy ra BĐT (1) luôn đúng

suy ra đề bài luôn đúng

Ngọc Thảo
Xem chi tiết
nà ní
29 tháng 4 2019 lúc 19:52

ta có \(\frac{a^2}{a^4+1}\le\frac{1}{2}\)

⇔ 2a2≤ a4+1

⇔ a4+1 ≥ 2a2

⇔ a4-2a2+1≥0

⇔(a2-1)2 ≥ 0 (luôn đúng )

vậy \(\frac{a^2}{a^4+1}\le\frac{1}{2}\); với a =1 hoặc a= -1 thì dấu bằng xảy ra

Dương Ngọc Minh
Xem chi tiết
Đinh Đức Hùng
1 tháng 8 2017 lúc 16:19

\(a^3+b^3\le a^4+b^4\)

\(\Leftrightarrow\left(a+b\right)\left(a^3+b^3\right)\le2\left(a^4+b^4\right)\) ( vì \(a+b\ge2\) )

\(\Leftrightarrow a^4+ab^3+a^3b+b^4\le2a^4+2b^4\)

\(\Leftrightarrow ab^3+a^3b\le a^4+b^4\)

\(\Leftrightarrow\left(a^4-a^3b\right)+\left(b^4-ab^3\right)\ge0\)

\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\)

\(\Leftrightarrow\left(a^3-b^3\right)\left(a-b\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\) (1)

Ta thấy \(a^2+ab+b^2=\left(a^2+ab+\frac{1}{4}b^2\right)+\frac{3}{4}b^2+\left(a+\frac{1}{2}b\right)^2+\frac{3}{4}b^2\ge0\forall ab\)

Nên (1) luôn đúng với mọi a;b

Vậy \(a^3+b^3\le a^4+b^4\)

Phạm Mỹ Dung
Xem chi tiết
Tea Milk
10 tháng 11 2017 lúc 23:03

Câu 4:

a) C/m tương đương

\(\dfrac{a+b}{2}\ge\sqrt{ab}\) \(\Leftrightarrow a+b-2\sqrt{ab}\ge0\)

\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)\ge0\) => luôn đúng

=> \(\dfrac{a+b}{2}\ge\sqrt{ab}\Rightarrowđpcm\)

b) \(\dfrac{bc}{a}+\dfrac{ca}{b}+\dfrac{ab}{c}\ge a+b+c\)

Áp dụng BĐT: \(\dfrac{x}{y}+\dfrac{y}{x}\ge2\)

+) \(\dfrac{bc}{a}+\dfrac{ba}{c}=b\left(\dfrac{c}{a}+\dfrac{a}{c}\right)\ge2b\)

+) \(\dfrac{ca}{b}+\dfrac{cb}{a}=c\left(\dfrac{a}{b}+\dfrac{b}{a}\right)\ge2c\)

+) \(\dfrac{ab}{c}+\dfrac{ac}{b}=a\left(\dfrac{b}{c}+\dfrac{c}{b}\right)\ge2a\)

Cộng vế vs vế ta có:

\(2\left(\dfrac{bc}{a}+\dfrac{ca}{b}+\dfrac{ab}{c}\right)\ge2\left(a+b+c\right)\)

\(\Leftrightarrow\dfrac{bc}{a}+\dfrac{ca}{b}+\dfrac{ab}{c}\ge a+b+c\Rightarrowđpcm\)

c) Áp dụng BĐT Cô-si cho 2 số không âm ta có:

\(12^2=\left(3a+5b\right)^2\ge4.3a.5b=60ab\)

=> \(ab\le\dfrac{12}{5}\)

Vậy GTLN của P là \(\dfrac{12}{5}\)

Dấu ''=" xảy ra khi \(3a=5b\), từ đó ta có hệ

\(\left\{{}\begin{matrix}3a=5b\\3a+5b=12\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=\dfrac{6}{5}\end{matrix}\right.\)

Tea Milk
11 tháng 11 2017 lúc 11:17

Câu 10:

a) \(\left(a+b\right)^2\le2\left(a^2+b^2\right)\)

\(\Leftrightarrow a^2+2ab+b^2-2a^2-2b^2\le0\)

\(\Leftrightarrow-\left(a^2-b^2\right)\le0\) => luôn đúng

\(\Rightarrow\left(a+b\right)^2\le2a^2+2b^2\Rightarrowđpcm\)