tìm GTLN A=225-|4x-3|
Bài 4:
a, Tìm GTLN
\(Q=-x^2-y^2+4x-4y+2\)
b, Tìm GTLN
\(A=-x^2-6x+5\)
\(B=-4x^2-9y^2-4x+6y+3\)
c, TÌm GTNN
\(P=x^2+y^2-2x+6y+12\)
a) Ta có: \(Q=-x^2-y^2+4x-4y+2=-\left(x^2+y^2-4x+4y-2\right)\)
\(=-\left(x^2-4x+4+y^2+4y+4\right)+10\)
\(=-\left[\left(x-2\right)^2+\left(y+2\right)^2\right]+10\le10\forall x,y\)
Vậy MaxQ=10 khi x=2, y=-2
b) +Ta có: \(A=-x^2-6x+5=-\left(x^2+6x-5\right)=-\left(x^2+6x+9-14\right)\)
\(=-\left(x^2+6x+9\right)+14=-\left(x+3\right)^2+14\le14\forall x\)
Vậy MaxA=14 khi x=-3
+Ta có: \(B=-4x^2-9y^2-4x+6y+3=-\left(4x^2+9y^2+4x-6y-3\right)\)
\(=-\left(4x^2+4x+1+9y^2-6y+1-5\right)\)
\(=-\left[\left(2x+1\right)^2+\left(3y-1\right)^2\right]+5\le5\forall x,y\)
Vậy MaxB=5 khi x=-1/2, y=1/3
c) Ta có: \(P=x^2+y^2-2x+6y+12=x^2-2x+1+y^2+6y+9+2\)
\(=\left(x-1\right)^2+\left(y+3\right)^2+2\ge2\forall x,y\)
Vậy MinP=2 khi x=1, y=-3
Tìm GTNN A=(x-1).(x-3)+11
Tìm GTLN B=5-4x^2+4x
a, (x-1)(x-3)+11
=x2-3x-x+3+11
=(x-2)2+10
Vì..................................
b,5-4x2+4x
=-(4x2-4x+4)+9
=-(2x-2)2+9
...........................................................
Tìm gtln của bthuc A= -4x² + 5x - 3
A = - 4\(x\)2 + 5\(x\) - 3
A = -( 4\(x^2\) - 5\(x\) + \(\dfrac{25}{16}\)) - \(\dfrac{23}{16}\)
A = -( 2\(x\) - \(\dfrac{5}{4}\))2 - \(\dfrac{23}{16}\)
Vì ( 2\(x\) - \(\dfrac{5}{4}\))2 ≥ 0; ⇒ - ( 2\(x\) - \(\dfrac{5}{4}\))2 ≤ 0 ⇒ -( 2 \(x\) - \(\dfrac{5}{4}\))2 - \(\dfrac{23}{16}\) ≤ - \(\dfrac{23}{16}\)
A(max) = - \(\dfrac{23}{16}\) ⇔ 2\(x\) - \(\dfrac{5}{4}\) = 0 ⇔ \(x\) = \(\dfrac{5}{4}\): 2 = \(\dfrac{5}{8}\)
Kết luận giá trị lớn nhất của biểu thức là - \(\dfrac{23}{16}\) xáy ra khi \(x\) = \(\dfrac{5}{8}\)
Tìm GTLN của các biểu thức sau:
a)3-x^2+2x (GTLN)
b)4X^2-20X+40(GTLN)
Tìm GTLN,GTNN của bt:
A=4x+3 / x2 +1
\(A=\dfrac{-x^2-1+x^2+4x+4}{x^2+1}=-1+\dfrac{\left(x+2\right)^2}{x^2+1}\ge-1\)
\(A_{min}=-1\) khi \(x=-2\)
\(A=\dfrac{4x^2+4-4x^2+4x-1}{x^2+1}=4-\dfrac{\left(2x-1\right)^2}{x^2+1}\le4\)
\(A_{max}=4\) khi \(x=\dfrac{1}{2}\)
Tìm GTLN,GTNN của bt:
A=3-4x / x2 +1
\(A=\dfrac{-x^2-1+x^2-4x+4}{x^2+1}=-1+\dfrac{\left(x-2\right)^2}{x^2+1}\ge-1\)
\(A_{min}=-1\) khi \(x=2\)
\(A=\dfrac{4x^2+4-4x^2-4x-1}{x^2+1}=4-\dfrac{\left(2x+1\right)^2}{x^2+1}\le4\)
\(A_{max}=4\) khi \(x=-\dfrac{1}{2}\)
Tìm GTLN `-4x^2+4x-3`
`-4x^2+4x-3`
`=-4x^2+4x-1-2`
`=-(2x-1)^2-2`
Vì `-(2x-1)^2 <= 0 AA x`
`=>-(2x-1)^2-2 <= -2 AA x`
Hay `-4x^2 + 4x-3 <= -2 AA x`
`=>Max =-2<=>x=1/2`
\(-4x^2+4x-3\)
\(=-4x^2+4x-1-2\)
\(=-\left(4x^2-4x+1\right)-2\)
\(=-\left(2x-1\right)^2-2\)
Ta thấy: \(\left(2x-1\right)^2\ge0\forall x\)
\(\Rightarrow-\left(2x-1\right)^2\le0\forall x\)
\(\Rightarrow-\left(2x-1\right)^2-2\le-2\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow2x-1=0\Leftrightarrow x=\dfrac{1}{2}\)
tìm gtln A=-(X-3)^2-7
b=-x^3-2x-5
C=-4x^2-4x+9
D=-3y^2-6y+1
hứa vote 5 sao
a, Ta có: \(-\left(x-3\right)^2\le0,\forall x\)
\(\Leftrightarrow-\left(x-3\right)^2-7\le-7\)
Vậy max A là \(-7\Leftrightarrow x=3\)
b, Ta có \(B=-x^2-2x-5=-\left(x+1\right)^2-4\le4\)
Dấu \("="\Leftrightarrow x=-1\)
c, Ta có \(C=-4x^2-4x+9=-\left(2x+1\right)^2+10\le10\)
Dấu \("="\Leftrightarrow x=-\dfrac{1}{2}\)
d, Ta có:\(D=-3y^2-6y+1\\ =-3\left(y^2+2y-\dfrac{1}{3}\right)=-3\left[\left(y+1\right)^2-\dfrac{4}{3}\right]=-3\left(y+1\right)^2+4\le4\)
Dấu \("="\Leftrightarrow y=-1\)
Tìm GTLN của biểu thức: a,A= (21|4x+6| + 33)/(3|4x+6|+5)
Giúp nhanh mình nhé !