Tìm m để phương trình:\(|mx-2|=\left|x+4\right|\) có nghiệm duy nhất
cho hệ phương trình sau \(\left\{{}\begin{matrix}mx-2y=3\\x-my=4\end{matrix}\right.\). tìm m để hệ phương trình trên có nghiệm duy nhất
Để hệ có nghiệm duy nhât thì m/1<>-2/-m
=>m^2<>2
=>\(m\ne\pm\sqrt{2}\)
Cho phương trình (ẩn x): \(\left(m^2-4\right)x^2+2\left(m+2\right)x+1=0\)
a) Tìm m để phương trình có nghiệm
b) Tìm m để phương trình có nghiệm duy nhất
\(a,\Leftrightarrow\Delta'\ge0\\ \Leftrightarrow\left(m+2\right)^2-\left(m^2-4\right)\ge0\\ \Leftrightarrow m^2+4m+4-m^2+4\ge0\\ \Leftrightarrow4m+8\ge0\\ \Leftrightarrow m\ge-2\\ b,\Leftrightarrow\Delta'=0\Leftrightarrow m=-2\)
cho hệ phương trình: \(\left\{{}\begin{matrix}mx+y=4\\x+2y=5\end{matrix}\right.\)
tìm m để hệ phương trình có nghiệm duy nhất thỏa mãn x > y > 0
Lời giải:
$x+2y=5\Leftrightarrow x=5-2y$. Thay vô pt $(1)$
$m(5-2y)+y=4$
$\Leftrightarrow y(1-2m)=4-5m$
Để pt có nghiệm duy nhất thì $1-2m\neq 0\Leftrightarrow m\neq \frac{1}{2}$
Khi đó: $y=\frac{4-5m}{1-2m}$
$x=5-2y=5-\frac{2(4-5m)}{1-2m}=\frac{-3}{1-2m}$
$x>0\Leftrightarrow \frac{-3}{1-2m}>0\Leftrightarrow 1-2m<0\Leftrightarrow m> \frac{1}{2}(1)$
$y>0\Leftrightarrow \frac{4-5m}{1-2m}>0\Leftrightarrow 4-5m<0$ (do $1-2m< 0$
$\Leftrightarrow m> \frac{4}{5}(2)$
Từ $(1); (2)\Rightarrow m> \frac{4}{5}$
$x> y\Leftrightarrow \frac{-3}{1-2m}> \frac{4-5m}{1-2m}$
$\Leftrightarrow \frac{5m-7}{1-2m}>0$
$\Leftrightarrow 5m-7< 0$ (do $1-2m<0$)
$\Leftrightarrow m< \frac{7}{5}$
Vậy $\frac{4}{5}< m< \frac{7}{5}$
Lời giải:
$x+2y=5\Leftrightarrow x=5-2y$. Thay vô pt $(1)$
$m(5-2y)+y=4$
$\Leftrightarrow y(1-2m)=4-5m$
Để pt có nghiệm duy nhất thì $1-2m\neq 0\Leftrightarrow m\neq \frac{1}{2}$
Khi đó: $y=\frac{4-5m}{1-2m}$
$x=5-2y=5-\frac{2(4-5m)}{1-2m}=\frac{-3}{1-2m}$
$x>0\Leftrightarrow \frac{-3}{1-2m}>0\Leftrightarrow 1-2m<0\Leftrightarrow m> \frac{1}{2}(1)$
$y>0\Leftrightarrow \frac{4-5m}{1-2m}>0\Leftrightarrow 4-5m<0$ (do $1-2m< 0$
$\Leftrightarrow m> \frac{4}{5}(2)$
Từ $(1); (2)\Rightarrow m> \frac{4}{5}$
$x> y\Leftrightarrow \frac{-3}{1-2m}> \frac{4-5m}{1-2m}$
$\Leftrightarrow \frac{5m-7}{1-2m}>0$
$\Leftrightarrow 5m-7< 0$ (do $1-2m<0$)
$\Leftrightarrow m< \frac{7}{5}$
Vậy $\frac{4}{5}< m< \frac{7}{5}$
Bài 4:
a) Tìm m để phương trình sau có nghiệm duy nhất: 2x - mx + 2m - 1 = 0.
b) Tìm m để phương trình sau có vô số nghiệm: mx + 4 = 2x + m2.
c) Tìm m để phương trình sau có nghiệm duy nhất dương: (m2 - 4)x + m - 2 = 0
à bài này a nhớ (hay mất điểm ở bài này) ;v
xinloi cậu tớ muốn giúp lắm mà tớ ngu toán:)
a)Ta có \(2x-mx+2m-1=0\\ =>x\left(2-m\right)+2m-1=0\)
Để pt có nghiệm duy nhất thì \(a\ne0=>2-m\ne0\\=>m\ne2\)
b)Ta có \(mx+4=2x+m^2\\ =>mx+4-2x+m^2=0\\ =>\left(m-2\right)x=m^2-4\)
Để pt vô số nghiệm thì \(\left\{{}\begin{matrix}m-2=0\\m^2-4=0\end{matrix}\right.=>\left\{{}\begin{matrix}m=2\\m=\pm2\end{matrix}\right.\)\(=>m=2\)
c)Để pt có nghiệm duy nhất thì \(m^2-4\ne0>m\ne\pm2\)
Chắc vậy :v
cho hệ phương trình:
\(\left\{{}\begin{matrix}mx+y=-1\\x+y=-m\end{matrix}\right.\)
tìm m để hpt có nghiệm duy nhất thỏa mãn \(y^2=x\)
giải hệ phương trình \(\left\{{}\begin{matrix}mx+2y=m+1\\x-y=2\end{matrix}\right.\)
a, giải hệ phương trình khi m=2
b, tìm m để hệ phương trình có nghiệm duy nhất (x,y) thỏa mãn xy = x+y+2
`x-y=2<=>x=y+2` thay vào trên
`=>m(y+2)+2y=m+1`
`<=>y(m+2)=m+1-2m`
`<=>y(m+2)=1-2m`
Để hpt có nghiệm duy nhất
`=>m+2 ne 0<=>m ne -2`
`=>y=(1-2m)/(m+2)`
`=>x=y+2=5/(m+2)`
`xy=x+y+2`
`<=>(5-10m)/(m+2)=(6-2m)/(m+2)+2`
`<=>(5-10m)/(m+2)=10/(m+2)`
`<=>5-10m=10`
`<=>10m=-5`
`<=>m=-1/2(tm)`
Vậy `m=-1/2` thì HPT có nghiệm duy nhât `xy=x+y+2`
`a)m=2`
$\begin{cases}2x+2y=3\\x-y=2\end{cases}$
`<=>` $\begin{cases}2x+2y=3\\2x-2y=4\end{cases}$
`<=>` $\begin{cases}4y=-1\\x=y+2\end{cases}$
`<=>` $\begin{cases}y=-\dfrac14\\y=\dfrac74\end{cases}$
Vậy m=2 thì `(x,y)=(7/4,-1/4)`
Sửa đoạn `xy=x+y+2`
``<=>(5-10m)/(m+2)^2=(6-2m)/(m+2)+2`
`<=>(5-10m)/(m+2)^2=10/(m+2)`
`<=>5-10m=10(m+2)`
`<=>1-2m=2m+4`
`<=>4m=-3`
`<=>m=-3/4(tm)`
.
Cho hệ phương trình với tham số m:\(\left\{{}\begin{matrix}x+my=2\\mx-2y=1\end{matrix}\right.\)
Tìm m để hệ phương trình có nghiệm duy nhất (x ;y ) mà S= y–x đạt giá trị nhỏ nhất.
Ta có: \(\left\{{}\begin{matrix}x+my=2\\mx-2y=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2-my\\m\left(2-my\right)-2y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2-my\\2m-m^2y-2y=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2-my\\2m-\left(m^2y+2y\right)=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2-my\\m^2y+2y=2m-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2-my\\y\left(m^2+2\right)=2m-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2-my\\y=\dfrac{2m-1}{m^2+2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2-\dfrac{m\cdot\left(2m-1\right)}{m^2+2}\\y=\dfrac{2m-1}{m^2+2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2m^2+4-2m^2+m}{m^2+2}=\dfrac{m+4}{m^2+2}\\y=\dfrac{2m-1}{m^2+2}\end{matrix}\right.\)
Tới đây bạn tự làm tiếp nhé
Phương trình \(mx^2-\left(29m+1\right)x+m+3=0\)
Tìm m để pt có nghiệm , có nghiệm kép , có 2 nghiệm phân biệt, có nghiệm duy nhất .
Tìm tất cả các giá trị của m để phương trình: \(\frac{\left(x+2\right)\left(mx+3\right)}{x-1}=0\) có nghiệm duy nhất
ta có \(\frac{\left(x+2\right)\left(mx+3\right)}{x-1}=0\Leftrightarrow\hept{\begin{cases}\left(x+2\right)\left(mx+3\right)=0_{ }\left(1\right)\\x-1\ne0\end{cases}}\)
Phương trình có nghiệm duy nhất khi (1) có nghiệm kép hoặc (1) có 2 nghiệm phân biệt trong đó một nghiệm là x=1
th1: (1) có nghiệm kép
\(\Rightarrow m=\frac{3}{2}\)
th2: (1) có 1 nghiệm x=1
\(\Rightarrow m=-3\)
Bài 2 : Cho hệ phương trình:
\(\left\{{}\begin{matrix}mx+y=5\left(1\right)\\2mx+3y=6\left(2\right)\end{matrix}\right.\)
Tìm m để hệ có nghiệm duy nhất(x;y) thỏa mãn:
(2m - 1)x + (m + 1)y = m (3)
Để hệ có nghiệm duy nhất thì \(\dfrac{m}{2m}\ne\dfrac{1}{3}\)
=>\(\dfrac{1}{2}\ne\dfrac{1}{3}\)(luôn đúng)
\(\left\{{}\begin{matrix}mx+y=5\\2mx+3y=6\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2mx+2y=10\\2mx+3y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-y=4\\mx+y=5\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=-4\\mx=5-y=5-\left(-4\right)=9\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=-4\\x=\dfrac{9}{m}\end{matrix}\right.\)
\(\left(2m-1\right)\cdot x+\left(m+1\right)\cdot y=m\)
=>\(\dfrac{9}{m}\left(2m-1\right)+\left(m+1\right)\cdot\left(-4\right)=m\)
=>\(\dfrac{9\left(2m-1\right)}{m}=m+4m+4=5m+4\)
=>m(5m+4)=18m-9
=>\(5m^2-14m+9=0\)
=>(m-1)(5m-9)=0
=>\(\left[{}\begin{matrix}m=1\\m=\dfrac{9}{5}\end{matrix}\right.\)