Lời giải:
$x+2y=5\Leftrightarrow x=5-2y$. Thay vô pt $(1)$
$m(5-2y)+y=4$
$\Leftrightarrow y(1-2m)=4-5m$
Để pt có nghiệm duy nhất thì $1-2m\neq 0\Leftrightarrow m\neq \frac{1}{2}$
Khi đó: $y=\frac{4-5m}{1-2m}$
$x=5-2y=5-\frac{2(4-5m)}{1-2m}=\frac{-3}{1-2m}$
$x>0\Leftrightarrow \frac{-3}{1-2m}>0\Leftrightarrow 1-2m<0\Leftrightarrow m> \frac{1}{2}(1)$
$y>0\Leftrightarrow \frac{4-5m}{1-2m}>0\Leftrightarrow 4-5m<0$ (do $1-2m< 0$
$\Leftrightarrow m> \frac{4}{5}(2)$
Từ $(1); (2)\Rightarrow m> \frac{4}{5}$
$x> y\Leftrightarrow \frac{-3}{1-2m}> \frac{4-5m}{1-2m}$
$\Leftrightarrow \frac{5m-7}{1-2m}>0$
$\Leftrightarrow 5m-7< 0$ (do $1-2m<0$)
$\Leftrightarrow m< \frac{7}{5}$
Vậy $\frac{4}{5}< m< \frac{7}{5}$
Lời giải:
$x+2y=5\Leftrightarrow x=5-2y$. Thay vô pt $(1)$
$m(5-2y)+y=4$
$\Leftrightarrow y(1-2m)=4-5m$
Để pt có nghiệm duy nhất thì $1-2m\neq 0\Leftrightarrow m\neq \frac{1}{2}$
Khi đó: $y=\frac{4-5m}{1-2m}$
$x=5-2y=5-\frac{2(4-5m)}{1-2m}=\frac{-3}{1-2m}$
$x>0\Leftrightarrow \frac{-3}{1-2m}>0\Leftrightarrow 1-2m<0\Leftrightarrow m> \frac{1}{2}(1)$
$y>0\Leftrightarrow \frac{4-5m}{1-2m}>0\Leftrightarrow 4-5m<0$ (do $1-2m< 0$
$\Leftrightarrow m> \frac{4}{5}(2)$
Từ $(1); (2)\Rightarrow m> \frac{4}{5}$
$x> y\Leftrightarrow \frac{-3}{1-2m}> \frac{4-5m}{1-2m}$
$\Leftrightarrow \frac{5m-7}{1-2m}>0$
$\Leftrightarrow 5m-7< 0$ (do $1-2m<0$)
$\Leftrightarrow m< \frac{7}{5}$
Vậy $\frac{4}{5}< m< \frac{7}{5}$