Để hệ có nghiệm duy nhât thì m/1<>-2/-m
=>m^2<>2
=>\(m\ne\pm\sqrt{2}\)
Để hệ có nghiệm duy nhât thì m/1<>-2/-m
=>m^2<>2
=>\(m\ne\pm\sqrt{2}\)
cho hệ phương trình \(\left\{{}\begin{matrix}x+my=m+1\\mx+y=2m\end{matrix}\right.\)(m là tham số ).Tìm m để hệ phương trình có nghiệm duy nhất (x;y) thỏa mãn \(\left\{{}\begin{matrix}x\ge2\\y\ge1\end{matrix}\right.\)
Cho hệ phương trình\(\left\{{}\begin{matrix}x+my=1\\mx+y=1\end{matrix}\right.\)
tìm m để nghiệm có hệ duy nhất thỏa mãn x+2y=5.
Làm rõ bước
Cho hệ phương trình sau:
\(\left\{{}\begin{matrix}2x+3y=1\\\left(m+1\right)x+my=-2\end{matrix}\right.\)
Tìm m để hệ phương trình trên có nghiệm duy nhất.
Bài 3: Cho hệ phương trình:
\(\left\{{}\begin{matrix}mx-y=1\\2x+my=4\end{matrix}\right.\)
a) Giải hệ khi m=1
b) Tìm tất cả các giá trị của m để hệ phương trình có nghiệm duy nhất (x;y) thỏa mãn x+y=2
Cho hệ phương trình \(\left\{{}\begin{matrix}x+my=m+1\\mx+y=3m-1\end{matrix}\right.\)
Tìm m để hệ có nghiệm duy nhất (x;y) sao cho tích xy nhỏ nhất?
Cho hệ phương trình :
\(\left\{{}\begin{matrix}mx-y=2\\x+my=1\end{matrix}\right.\)
a) Giải hệ phương trình theo tham số m.
b) Trong trường hợp hệ phương trình có nghiệm duy nhất (x, y). Tìm các giá trị của m để x + y = -1.
Cho hệ phương trình \(\left\{{}\begin{matrix}x+my=m+1\\mx+y=3m-1\end{matrix}\right.\)(m là tham số)
Tìm giá trị của m để hệ phương trình có nghiệm duy nhất (x;y) thỏa mãn x+y<0
Cho hệ phương trình \(\left\{{}\begin{matrix}\left(m-1\right)x-2y=1\\3x+my=1\end{matrix}\right.\)
a) Giải hệ phương trình khi \(m=\sqrt{3}+1\)
b) Chứng minh rằng hệ phương trình có 1 nghiệm duy nhất với mọi \(m\)
c) Tìm \(m\) để \(x-y\) đạt giá trị nhỏ nhất
Cho hệ phương trình
\(\left\{{}\begin{matrix}mx+x=1\\2x-y=m\end{matrix}\right.\)
a) Giải hệ phương trình với m= -1
b) Tìm m để hệ phương trình có nghiệm duy nhất với mọi m x>0
y \(\le\) 0