cho d:y=(3m-1)x+m-1.tìm m de Ox ,Oy tại A,B sao cho \(S_{0AB}=\dfrac{1}{10}\)
Bài I. Cho hai đuờng thắng (d): y (m-2)x + 3 (m 2); (d): y =- m'x+ 1 (m # 0).
a,Tim m de (d) song song với (d).
b) Tim m để (d) cắt Ox tại A, cắt Oy tại B sao cho BAO = 60°.
Bài 2. Cho đường thẳng (d): y = (2m + 1)x- 2 (m) cắt Ox tại A, cắt Oy tại B. Tim m sao cho:
a) Khoảng cách từ gốc tọa độ O đến đường thẳng (d) bằng căn 2.
b) Diện tích tam giác AOB bằng 1/2
Bài III(2 điểm) Cho hàm số y= (3m - 1)x + 4.
1) Vẽ đồ thị hàm số với m = 1
2) Tìm m để đồ thị hàm số cắt trục Ox, Oy tại 2 điểm A, B sao cho tam giác OABcó diện tích bằng 6
\(1,m=1\Leftrightarrow y=2x+4\\ 2,\text{PT giao Ox: }y=0\Leftrightarrow\left(3m-1\right)x=-4\Leftrightarrow x=\dfrac{4}{1-3m}\Leftrightarrow A\left(\dfrac{4}{1-3m};0\right)\Leftrightarrow OA=\dfrac{4}{\left|1-3m\right|}\\ \text{PT giao Oy: }x=0\Leftrightarrow y=4\Leftrightarrow B\left(0;4\right)\Leftrightarrow OB=4\\ S_{OAB}=\dfrac{1}{2}OA\cdot OB=6\\ \Leftrightarrow\dfrac{1}{2}\cdot\dfrac{4}{\left|1-3m\right|}\cdot4=6\\ \Leftrightarrow\dfrac{8}{\left|1-3m\right|}=6\\ \Leftrightarrow\left|1-3m\right|=\dfrac{4}{3}\Leftrightarrow\left[{}\begin{matrix}1-3m=\dfrac{4}{3}\\3m-1=\dfrac{4}{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=-\dfrac{1}{9}\\m=\dfrac{7}{9}\end{matrix}\right.\)
Tìm `m` để `d` và `d'` cắt nhau tại `1` điểm trên `Ox`
`d:y=2x+5` và `d':y=x-3m+2`
Để d' và d cắt nhau tại 1 điểm thuộc trục Ox thì
2<>1 và -5/2=(3m-2)/1
=>3m-2=-5/2
=>3m=-1/2
=>m=-1/6
Chờ xong đợt anh Linh ra đề rồi anh làm cho m
Cho đường thẳng (d) y = (m+2)x + m (m là tham số)
a) Tìm điểm cố định mà đường thẳng (d) luôn đi qua với mọi m
b) Tìm m để (d) cắt trục Ox, Oy tại A và B sao cho SAOB = \(\dfrac{1}{2}\left(đvdt\right)\)
a.
Giả sử điểm cố định mà (d) đi qua có tọa độ \(M\left(x_0;y_0\right)\)
Với mọi m, ta có:
\(y_0=\left(m+2\right)x_0+m\)
\(\Leftrightarrow m\left(x_0+1\right)+2x_0-y_0=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_0+1=0\\2x_0-y_0=0\end{matrix}\right.\) \(\Rightarrow M\left(-1;-2\right)\)
b. Để (d) cắt 2 trục tạo thành tam giác thì \(m\ne\left\{0;-2\right\}\)
Khi đó ta có: \(\left\{{}\begin{matrix}A\left(-\dfrac{m}{m+2};0\right)\\B\left(0;m\right)\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}OA=\left|\dfrac{m}{m+2}\right|\\OB=\left|m\right|\end{matrix}\right.\)
\(S_{OAB}=\dfrac{1}{2}OA.OB=\dfrac{1}{2}\)
\(\Leftrightarrow\dfrac{m^2}{\left|m+2\right|}=1\)
\(\Leftrightarrow\left[{}\begin{matrix}m^2=m+2\\m^2=-m-2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}m=-1\\m=2\end{matrix}\right.\)
Cho đường thẳng d:y = (\(m^2\) - 2m + 2)x + 4. Tìm m để d cắt Ox tại A và cắt Oy tại B sao cho khoảng cách từ O đến d lớn nhất.
Cho hs y=(m+1)x + 2 tìm m để đths cắt ox,oy tại A,B sao cho tam giác AOB cân
H/s cắt `Ox` tại `A=>y=0=>0=(m+1)x+2<=>x=-2/[m+1]=>OA=|[-2]/[m+1]|`
H/s cắt `Oy` tại `B=>x=0=>y=2=>OB=|2|=2`
Để `\triangle AOB` cân `=>OA=OB`
`<=>|[-2]/[m+1]|=2`
`<=>|-2|=2|m+1|`
`<=>|m+1|=1<=>[(m+1=1),(m+1=-1):}<=>[(m=0),(m=-2):}`
Cho đường thẳng d có phương trình y 3m 2 .x m 2 m là tham số Đường thẳng d lần lượt cắt Ox tại A, cắt Oy tại B. Tìm m để diện tích tam giác OAB 1 2
a) Tìm giá trị của m biết đường thẳng (d) đi qua điểm A(1; 2).
2= (3m – 2).1 + m – 2
2=3m -2 +m -2
2=4m -4
6=4m
m =3/2
b) Đường thẳng (d) cắt Ox tại A, Oy tại B. Tìm m để diện tích ∆OAB bằng ½.
m <>2/3 ;2
A={(m-2)/(3m-2);0)
B={0;(m-2) )
diện tích ∆OAB =1/2 OA.OB
=> OA.OB=1
<=>(m-2)/(3m-2).(m-2) =±1
<=>(m-2)^2 =±(3m-2)
<=>(m^2-4m+4) =±(3m-2)
m^2 -7m +6 =0 => m={ 1; 6}
m^2 -m +2 =0 (vn)
m ={1;6 }
Cho đường thẳng (d) có phương trình: y = (3m - 2).x + m - 2 (m là tham số)
Đường thẳng (d) lần lượt cắt Ox tại A, cắt Oy tại B. Tìm m để diện tích tam giác OAB = 1/2
Cho x = 0 => y = m - 2
=> d cắt trục Oy tại B(0;m-2) => OB = | m - 2 |
Cho y = 0 => x = \(\frac{2-m}{3m-2}\)
=> d cắt trục Ox tại A(\(\frac{2-m}{3m-2}\);0) => \(OA=\left|\frac{2-m}{3m-2}\right|\)
Ta có : \(S_{OAB}=\frac{1}{2}.OA.OB=\frac{1}{2}\left|\frac{\left(m-2\right)\left(2-m\right)}{3m-2}\right|=\frac{1}{2}\)
\(\Leftrightarrow\left|\frac{-m^2-4+4m}{3m-2}\right|=1\)ĐK : \(\frac{-m^2-4+4m}{3m-2}\ge0\Leftrightarrow\frac{-\left(m-2\right)^2}{3m-2}\ge0\Leftrightarrow\frac{\left(m-2\right)^2}{3m-2}\le0\)
\(\Rightarrow3m-2< 0\Leftrightarrow m< \frac{2}{3}\)
TH1 : \(\frac{-m^2-4+4m}{3m-2}=1\Leftrightarrow-m^2-4+4m=3m-2\)
\(\Leftrightarrow m^2-m+2=0\Leftrightarrow\left(m+\frac{1}{2}\right)^2+\frac{11}{4}>0\)vậy pt vô nghiệm
TH2 : \(\frac{-m^2+4m-4}{3m-2}=-1\Leftrightarrow-m^2+4m-4=2-3m\)
\(\Leftrightarrow m^2-7m+6=0\Leftrightarrow m=1;m=6\)(ktmđk)
Vậy ko có giá trị m để SOAB = 1/2
Cho hàm số \(y=\dfrac{x-1}{x+2}\). Viết phương trình tiếp tuyến với (C) tại điểm M thuộc (C) sao cho tiếp tuyến tại M cắt Ox tại A, Oy tại B sao cho:
a) Tam giác OAB có \(S=\dfrac{3}{2}\)
b) OA = 3OB
c) Tiếp tuyến tại M vuông góc với MI và I(-2;1)
d) Tiếp tuyến tại M sao cho d(I; tiếp tuyến) nhỏ nhất