Tìm GTNN của biểu thức: A=x^2+2y^2+2xy+2x+2018
Tìm GTNN của các biểu thức
D=x2+2y+2y2-2xy+2010
E= 2x2+y2-2xy-2y+12
F=x2+2y2-2xy+2x-6y+2018
Tìm GTLN của biểu thức
A=100-2x-x2
B=-3x2+x
C=12-3x2-4y2+18x-8y
Bài 2:
a: \(=-\left(x^2+2x-100\right)\)
\(=-\left(x^2+2x+1-101\right)\)
\(=-\left(x+1\right)^2+101< =101\)
Dấu = xảy ra khi x=-1
b: \(=-3\left(x^2-\dfrac{1}{3}x\right)\)
\(=-3\left(x^2-2\cdot x\cdot\dfrac{1}{6}+\dfrac{1}{36}-\dfrac{1}{36}\right)\)
\(=-3\left(x-\dfrac{1}{6}\right)^2+\dfrac{1}{12}< =\dfrac{1}{12}\)
Dấu = xảy ra khi x=1/6
c: \(=-\left(3x^2+4y^2-18x+8y-12\right)\)
\(=-\left(3x^2-18x+27+4y^2+8y+4-43\right)\)
\(=-3\left(x-3\right)^2-4\left(y+1\right)^2+43< =43\)
Dấu = xảy ra khi x=3 và y=-1
tìm gtnn của biểu thức : A= x^2 -2xy +2y^2 +2x -10y +2033
Giải:x2-2xy+y2+y2+2x-10y+2033=(x-y)2+2(x-y)+1+y2-8y+16+2016
=(x+y+1)2+(y-4)2+2016>=2016 Vì(x+y+1)2;(y-4)2 >=0 với mọi x;y
nên A min=2016 khi y=4;x=-5
Cho hình bình hành ABCD . Có M,N,P,Q,E,F lần lượt là trung điểm của AB,BC,CD,AD,AC,BD. Chứng minh MP,NQ,EF đồng quy
Tìm GTNN của biểu thức: A = \(-x^2-2y^2-2xy+2x-2y-15\)
HELP MEEEE:
Tìm GTNN của biểu thức:
a) A= x^2+2x+12
b) B= x^2+2y^2+2xy-2x+2y+33
a) \(A=x^2+2x+12\)
\(A=x^2+2x+1+11\)
\(A=\left(x+1\right)^2+11\)
Có: \(\left(x+1\right)^2\ge0\Rightarrow\left(x+1\right)^2+11\ge11\)
Dấu bằng xảy ra khi: \(\left(x+1\right)^2=0\Rightarrow x+1=0\Rightarrow x=-1\)
Vậy: \(Min_A=11\) tại \(x=-1\)
tìm GTNN của biểu thức
A=x^2+2y^2+2xy+2x-4y+2016
\(A=x^2+2y^2+2xy+2x-4y+2016\)
\(=x^2+y^2+y^2+2xy+2x+2y-6y+2016\)
\(=\left(x^2+2xy+y^2\right)+\left(y^2-6y+9\right)+\left(2x+2y\right)+2007\)
\(=\left(x+y\right)^2+\left(y-3\right)^2+2\left(x+y\right)+2007\)
\(=\left(x+y+1\right)^2+\left(y-3\right)^2+2006\)
Vì \(\hept{\begin{cases}\left(x+y+1\right)^2\ge0;\forall x,y\\\left(y-3\right)^2\ge0;\forall x,y\end{cases}}\)\(\Rightarrow\left(x+y+1\right)^2+\left(y-3\right)^2\ge0;\forall x,y\)
\(\Rightarrow\left(x+y+1\right)^2+\left(y-3\right)^2+2006\ge0+2006;\forall x,y\)
Hay \(A\ge2006;\forall x,y\)
Dấu"=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x+y+1\right)^2=0\\\left(y-3\right)^2=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=2\\y=3\end{cases}}\)
Vậy \(A_{min}=2006\)\(\Leftrightarrow\hept{\begin{cases}x=2\\y=3\end{cases}}\)
tìm GTNN của biểu thức sau: A=2x^2+y^2+2xy+2x-2y+2023
Lời giải:
$A=2x^2+y^2+2xy+2x-2y+2023$
$=(x^2+2xy+y^2)+x^2+2x-2y+2023$
$=(x+y)^2-2(x+y)+x^2+4x+2023$
$=(x+y)^2-2(x+y)+1+(x^2+4x+4)+2018$
$=(x+y-1)^2+(x+2)^2+2018\geq 0+0+2018=2018$
Vậy GTNN của $A$ là $2018$. Giá trị này đạt tại $x+y-1=x+2=0$
$\Leftrightarrow x=-2; y=3$
tìm gtnn của biểu thức
a/ x^2 + 2y^2+2xy +4x + 6y +19
b/2x^2+y^2+2xy-2y-4
c/4x^2 +2xy-4x+4xy-3
a) \(A=x^2+2y^2+2xy+4x+6y+19\)
\(=\left[\left(x^2+2xy+y^2\right)+2.\left(x+y\right).2+4\right]+\left(y^2+2y+1\right)+14\)
\(=\left[\left(x+y\right)^2+2\left(x+y\right).2+2^2\right]+\left(y+1\right)^2+14\)
\(=\left(x+y+2\right)^2+\left(y+1\right)^2+14\ge14\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x+y+2=0\\y=-1\end{cases}}\Leftrightarrow x=y=-1\)
b)Đề có gì đó sai sai...
c) Tương tự câu b,em cũng thấy sai sai...HÓng cao nhân giải ạ!
b) \(P=2x^2+y^2+2xy-2y-4\)
\(\Leftrightarrow2P=4x^2+2y^2+4xy-4y-8\)
\(\Leftrightarrow2P=\left(4x^2+4xy+y^2\right)+\left(y^2-4y+4\right)-12\)
\(\Leftrightarrow2P=\left(2x+y\right)^2+\left(y-2\right)^2-12\ge-12\forall x;y\)
Có \(2P\ge-12\Leftrightarrow P\ge-6\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}2x+y=0\\y-2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-1\\y=2\end{cases}}}\)
Tìm GTNN của các biểu thức :
a, P=2x^2+y^2-2xy-2x+2015
b, Q= x^2=2y^2-x+3y với x-2y=2
c, B=3x^2+y^2-8x+2xy+16
a) ... = (x^2 -2xy + y^2)+(x^2 -2x+1)+2014=(x-y)^2 + (x-1)^2 +2014 >= 2014
Đăngt thức xay ra khi x=y=1
Tìm GTNN của biểu thức:
a) \(A=2x^2+2xy+y^2-2x+2y+2\)
b) \(B=-x^2+2xy-4y^2+2x+10y+5\)
c) \(C=-x^2-2y^2-2xy+2x-2y-15\)