Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
hfghfgh
Xem chi tiết
Nguyễn Châu Mỹ Linh
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 7 2020 lúc 22:09

Tính

a) Ta có: \(A=\left(\sqrt{6}+\sqrt{10}\right)-\sqrt{4-\sqrt{15}}\)

\(=\sqrt{2}\left(\sqrt{3}+\sqrt{5}\right)-\sqrt{4-\sqrt{15}}\)

\(=\sqrt{3}+\sqrt{5}-\sqrt{8-2\sqrt{15}}\)

\(=\sqrt{3}+\sqrt{5}-\sqrt{5-2\cdot\sqrt{5}\cdot\sqrt{3}+3}\)

\(=\sqrt{3}+\sqrt{5}-\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}\)

\(=\sqrt{3}+\sqrt{5}-\left|\sqrt{5}-\sqrt{3}\right|\)

\(=\sqrt{3}+\sqrt{5}-\left(\sqrt{5}-\sqrt{3}\right)\)

\(=\sqrt{3}+\sqrt{5}-\sqrt{5}+\sqrt{3}\)

\(=2\sqrt{3}\)

c) Ta có: \(C=\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\cdot\sqrt{4-\sqrt{15}}\)

\(=\left(4+\sqrt{15}\right)\cdot\left(\sqrt{5}-\sqrt{3}\right)\cdot\sqrt{2}\cdot\sqrt{4-\sqrt{15}}\)

\(=\left(4+\sqrt{15}\right)\cdot\left(\sqrt{5}-\sqrt{3}\right)\cdot\sqrt{8-2\sqrt{15}}\)

\(=\left(4+\sqrt{15}\right)\cdot\left(\sqrt{5}-\sqrt{3}\right)\cdot\sqrt{5-2\cdot\sqrt{5}\cdot\sqrt{3}+3}\)

\(=\left(4+\sqrt{15}\right)\cdot\left(\sqrt{5}-\sqrt{3}\right)\cdot\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}\)

\(=\left(4+\sqrt{15}\right)\cdot\left(\sqrt{5}-\sqrt{3}\right)\cdot\left|\sqrt{5}-\sqrt{3}\right|\)

\(=\left(4+\sqrt{15}\right)\cdot\left(\sqrt{5}-\sqrt{3}\right)\cdot\left(\sqrt{5}-\sqrt{3}\right)\)

\(=\left(4+\sqrt{15}\right)\cdot\left(\sqrt{5}-\sqrt{3}\right)^2\)

\(=\left(4+\sqrt{15}\right)\cdot\left(8-2\sqrt{15}\right)\)

\(=2\left(4+\sqrt{15}\right)\left(4-\sqrt{15}\right)\)

\(=2\left[4^2-\left(\sqrt{15}\right)^2\right]\)

\(=2\cdot\left[16-15\right]=2\cdot1=2\)

Tiến Hoàng Minh
Xem chi tiết
Nguyễn Lê Phước Thịnh
20 tháng 5 2022 lúc 18:50

\(C=\left(4+\sqrt{15}\right)\cdot\left(\sqrt{5}-\sqrt{3}\right)\cdot\sqrt{8-2\sqrt{15}}\)

\(=\left(4+\sqrt{15}\right)\left(8-2\sqrt{15}\right)\)

\(=32-8\sqrt{15}+8\sqrt{15}-30=2\)

2611
20 tháng 5 2022 lúc 18:53

`C=(4+\sqrt{15})(\sqrt{10}-\sqrt{6})\sqrt{4-\sqrt{15}}`

`C=(4\sqrt{10}-4\sqrt{6}+5\sqrt{6}-3\sqrt{10})\sqrt{4-\sqrt{15}}`

`C=(\sqrt{10}+\sqrt{6})\sqrt{4-\sqrt{15}}`

`C=\sqrt{(\sqrt{10}+\sqrt{6})^2 .(4-\sqrt{15})}`

`C=\sqrt{(10+6+2\sqrt{60})(4-\sqrt{15})}`

`C=\sqrt{(16+4\sqrt{15})(4-\sqrt{15})}`

`C=\sqrt{64-16\sqrt{15}+16\sqrt{15}-60}`

`C=\sqrt{4}=2`

Nguyễn Đức Lâm
Xem chi tiết
Hiện thực khốc liệt :D
30 tháng 6 2021 lúc 14:52

$(4+\sqrt{15})(\sqrt{10}-\sqrt6)\sqrt{4-\sqrt{15}}$

$=\sqrt{4+\sqrt{15}}.\sqrt{4+\sqrt{15}}.(\sqrt{10}-\sqrt6)\sqrt{4-\sqrt{15}}$

$=(\sqrt{10}-\sqrt6)\sqrt{4+\sqrt{15}}\sqrt{16-15}$

$=\sqrt2(\sqrt5-\sqrt3)\sqrt{4+\sqrt{15}}$

$=(\sqrt5-\sqrt3)\sqrt{8+2\sqrt{15}}$

$=(\sqrt5-\sqrt3)\sqrt{5+2\sqrt{5}.\sqrt3+3}$

$=(\sqrt5-\sqrt3)\sqrt{(\sqrt5+\sqrt3)^2}$

$=(\sqrt5-\sqrt3)(\sqrt5+\sqrt3)=5-3=2$

bí ẩn
Xem chi tiết
Yeutoanhoc
26 tháng 6 2021 lúc 14:54

`1)A=sqrt{4+sqrt{10+2sqrt5}}+sqrt{4-sqrt{10+2sqrt5}}`

`<=>A^2=4+sqrt{10+2sqrt5}+4-sqrt{10+2sqrt5}+2sqrt{16-10-2sqrt5}`

`<=>A^2=8+2sqrt{6-2sqrt5}`

`<=>A^2=8+2sqrt{(sqrt5-1)^2}`

`<=>A^2=8+2(sqrt5-1)`

`<=>A^2=6+2sqrt5=(sqrt5+1)^2`

`<=>A=sqrt5+1(do \ A>0)`

`b)B=sqrt{35+12sqrt6}-sqrt{35-12sqrt6}`

Vì `35+12sqrt6>35-12sqrt6`

`=>B>0`

`B^2=35+12sqrt6+35-12sqrt6-2sqrt{35^2-(12sqrt6)^2}`

`<=>B^2=70-2sqrt{361}`

`<=>B^2=70-2sqrt{19^2}=70-38=32`

`<=>B=sqrt{32}=4sqrt2(do \ B>0)`

`3)(4+sqrt{15})(sqrt{10}-sqrt6)sqrt{4-sqrt{15}}`

`=sqrt{4+sqrt{15}}.sqrt{4-sqrt{15}}.sqrt{4+sqrt{15}}(sqrt{10}-sqrt6)`

`=sqrt{16-15}.sqrt2(sqrt5-sqrt3).sqrt{4+sqrt{15}}`

`=sqrt{8+2sqrt{15}}(sqrt5-sqrt3)`

`=sqrt{5+2sqrt{5.3}+3}(sqrt5-sqrt3)`

`=sqrt{(sqrt5+sqrt3)^2}(sqrt5-sqrt3)`

`=(sqrt5+sqrt3)(sqrt5-sqrt3)`

`=5-3=2`

Nguyễn Duy Khang
Xem chi tiết
HT.Phong (9A5)
5 tháng 9 2023 lúc 9:48

a) \(\left(\sqrt{14}+\sqrt{6}\right)\sqrt{5-\sqrt{21}}\)

\(=\sqrt{14}\cdot\sqrt{5-\sqrt{21}}+\sqrt{6}\cdot\sqrt{5-\sqrt{21}}\)

\(=\sqrt{14\cdot\left(5-\sqrt{21}\right)}+\sqrt{6\cdot\left(5-\sqrt{21}\right)}\)

\(=\sqrt{70-14\sqrt{21}}+\sqrt{30-6\sqrt{21}}\)

\(=\sqrt{7^2-2\cdot7\cdot\sqrt{21}+\left(\sqrt{21}\right)^2}+\sqrt{\left(\sqrt{21}\right)^2-2\cdot3\cdot\sqrt{21}+3^2}\)

\(=\sqrt{\left(7-\sqrt{21}\right)^2}+\sqrt{\left(\sqrt{21}-3\right)^2}\)

\(=\left|7-\sqrt{21}\right|+\left|\sqrt{21}-3\right|\)

\(=7-\sqrt{21}+\sqrt{21}-3\)

\(=4\)

b) \(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)

\(=\left[4\cdot\left(\sqrt{10}-\sqrt{6}\right)+\sqrt{15}\cdot\left(\sqrt{10}-\sqrt{6}\right)\right]\cdot\sqrt{4-\sqrt{15}}\)

\(=\left(4\sqrt{10}-4\sqrt{6}+\sqrt{150}-\sqrt{90}\right)\sqrt{4-\sqrt{15}}\)

\(=\left(4\sqrt{10}-4\sqrt{6}+5\sqrt{6}-3\sqrt{10}\right)\sqrt{4-\sqrt{15}}\)

\(=\left(\sqrt{10}+\sqrt{6}\right)\left(\sqrt{4-\sqrt{15}}\right)\)

\(=\sqrt{10\cdot\left(4-\sqrt{15}\right)}+\sqrt{6\cdot\left(4-\sqrt{15}\right)}\)

\(=\sqrt{40-10\sqrt{15}}+\sqrt{24-6\sqrt{15}}\)

\(=\sqrt{5^2-2\cdot5\cdot\sqrt{15}+\left(\sqrt{15}\right)^2}+\sqrt{\left(\sqrt{15}\right)^2-2\cdot3\cdot\sqrt{15}+3^2}\)

\(=\sqrt{\left(5-\sqrt{15}\right)^2}+\sqrt{\left(\sqrt{15}-3\right)^2}\)

\(=\left|5-\sqrt{15}\right|+\left|\sqrt{15}-3\right|\)

\(=5-\sqrt{15}+\sqrt{15}-3\)

\(=2\)

Nguyễn Lê Tiểu Long
Xem chi tiết
Y
23 tháng 6 2019 lúc 20:19

\(=\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)\sqrt{8-2\sqrt{15}}\)

\(=\frac{1}{2}\left(8+2\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}\)

\(=\frac{1}{2}\left(\sqrt{5}+\sqrt{3}\right)^2\left(\sqrt{5}-\sqrt{3}\right)^2\)

\(=\frac{1}{2}\left(5-3\right)^2=2\)

Thủy Linh
Xem chi tiết
Lê Đình Thái
23 tháng 9 2017 lúc 21:42

B=\(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\left(\sqrt{4-\sqrt{15}}\right)\)

=\(\left(4\sqrt{10}+5\sqrt{6}-4\sqrt{6}-3\sqrt{10}\right)\left(\sqrt{4-\sqrt{15}}\right)\)

=\(\left(\sqrt{6}+\sqrt{10}\right)\left(\sqrt{4-\sqrt{15}}\right)\)=\(\left(\sqrt{24-6\sqrt{15}}\right)+\left(\sqrt{40-10\sqrt{15}}\right)\)

=\(\sqrt{15}-3+5-\sqrt{15}=2\)

Võ Minh Thắng
Xem chi tiết
Phùng Khánh Linh
15 tháng 7 2018 lúc 10:56

\(VT=\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}=\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)\sqrt{5-2\sqrt{5}.\sqrt{3}+3}=\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)^2=\left(4+\sqrt{15}\right)\left(8-2\sqrt{15}\right)=2\left(4+\sqrt{15}\right)\left(4-\sqrt{15}\right)=2\left(16-15\right)=2=vp\)Vậy , đẳng thức được chứng minh .

nguyen ngoc son
Xem chi tiết
Nguyễn Hoàng Minh
16 tháng 9 2021 lúc 17:12

\(=\sqrt{4+\sqrt{15}}\left(\sqrt{4+\sqrt{15}}\cdot\sqrt{4-\sqrt{15}}\right)\left(\sqrt{10}-\sqrt{6}\right)\\ =\sqrt{4+\sqrt{15}}\left(16-15\right)\left(\sqrt{10}-\sqrt{6}\right)\\ =\sqrt{2\left(4+\sqrt{15}\right)}\left(\sqrt{5}-\sqrt{3}\right)\\ =\sqrt{8+2\sqrt{15}}\left(\sqrt{5}-\sqrt{3}\right)\\ =\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)=5-3=2\)