CM: đa thức (x+y)6+(x-y)6 chia hết cho đa thức (x)2+(y)2
Chứng minh rằng đa thức (x + y)6 + (x - y)6 chia hết cho đa thức x2 + y2.
Lời giải:
Đặt \((x+y)^2=a; (x-y)^2=b\)
\(\Rightarrow a+b=2(x^2+y^2)\)
Khi đó:
\((x+y)^6+(x-y)^6=a^3+b^3=(a+b)(a^2-ab+b^2)=2(x^2+y^2)(a^2-ab+b^2)\vdots x^2+y^2\)
Ta có đpcm.
Chứng minh rằng đa thức \(\left(x+y\right)^6+\left(x-y\right)^6\) chia hết cho đa thức \(x^2+y^2\)
\(\left(\left(x+y\right)^2\right)^3+\left(\left(x-y\right)^2\right)^3\)
\(=\left(\left(x+y\right)^2+\left(x-y\right)^2\right)\left(\left(x+y\right)^4-\left(x^2-y^2\right)^2+\left(x-y\right)^4\right)\)
\(=\left(2x^2+2y^2\right)\left(\left(x+y\right)^4-\left(x^2-y^2\right)^2+\left(x-y\right)^4\right)\)
\(=2\left(x^2+y^2\right)\left(\left(x+y\right)^4-\left(x^2-y^2\right)^2+\left(x-y\right)^4\right)⋮\left(x^2+y^2\right)\)
\(\left(x+y\right)^6+\left(x-y\right)^6\)
\(=\left[\left(x+y\right)^2\right]^3+\left[\left(x-y\right)^2\right]^3\)
\(=\left[\left(x+y\right)^2+\left(x-y\right)^2\right]\left(...\right)\)
\(=\left(x^2+2xy+y^2+x^2-2xy+y^2\right)\left(...\right)\)
\(=\left(2x^2+2y^2\right)\left(...\right)\)
\(=2\left(x^2+y^2\right)\left(...\right)⋮x^2+y^2\left(đpcm\right)\)
CMR:(x+y)^6+(x-y)^6 chia hết cho đa thức x^2+y^2
(x+y)^6+(x-y)^6=[(x+y)2]3+[(x-y)2]3=[(x+y)2+(x-y)2][(x+y)4-(x+y)(x-y)+(x-y)4]
=(2x2+2y2)[(x+y)4-(x+y)(x-y)+(x-y)4]
=2.(x2+y2)[(x+y)4-(x+y)(x-y)+(x-y)4] chia hết cho đa thức x2+y2
=> điều phải chứng minh
1) Chứng minh rằng đa thức (x+y)6+(x-y)6 chia hết cho đa thức x2+y2
2) Tìm dư của phép chia đa thức f(x) cho x2-1 với: f(x)=x50x+49+x48+...+x2+x+1
1) A=\(\left(x+y\right)^6+\left(x-y\right)^6=\left[\left(x+y\right)^2+\left(x-y\right)^2\right]\left[binh-phuong-thieu\right]\)
\(=2\left(x^2+y^2\right)\left[binh-phuong-thieu..\right]\)=> A chia hết cho x2+y2
2) gọi dư của phép chia là ax+b
ta có f(1) = a+b =51
f(-1) = -a+b =1
=> b =26 ; a =25
Vậy dư là : 25x + 26
Chứng minh rằng đa thức ( x + y)6 + ( x - y)6 chia hết cho đa thức x2 + y2
GIÚP MK NHA
cho đa thức A=x3+x2y-xy2-y3+x2z-y2z
1. phân tích đa thức thành nhân tử
2. chứng minh rằng nếu x,y,z là các số nguyên và x+y+z chia hết cho 6 thì giá trị đa thức B=A-3xyz cũng chia hết cho 6
CMR: đa thức \(\left(x+y\right)^6+\left(x-y\right)^6\) chia hết cho đa thức \(x^2+y^2\)
15 phút nữa đưa ra lời giải rồi đợi mọi người bấm à
\(\left(x+y\right)^6+\left(x-y\right)^6=\left[\left(x+y\right)^2\right]^3+\left[\left(x-y\right)^2\right]^3\) chia hết cho \(\left(x+y\right)^2+\left(x-y\right)^2\) tức là chia hết cho \(2.\left(x^2+y^2\right)\) do đó chia hết cho \(x^2+y^2\)
Ta có : \(\left(x+y\right)^2=x^2+2xy+y^2.\)
\(\Leftrightarrow\left(x+y\right)^6=\left(x+y\right)^2.\left(x+y\right)^2.\left(x+y\right)^2\) .
\(\Leftrightarrow\left(x+y\right)^6=x^6+8x^3y^3+y^6\) .
\(\Leftrightarrow\left(x-y\right)^6=x^6-8x^3y^3+y^6\).
\(\Leftrightarrow\left(x+y\right)^6+\left(x-y\right)^6=\left(x^6+x^6\right)+\left(8x^3y^3-8x^3y^3\right)+\left(x^6+x^6\right)\).
\(\Leftrightarrow\left(x+y\right)^6+\left(x-y\right)^6=2.x^6+2.y^6=2\left(x^6+y^6\right)=2.\left(\left(x^2+y^2\right).\left(x^2+y^2\right):2\right).\)
a.Phân tích đa thức sau thành nhân tử:
3xy(x-y)+5x(x-y)
b. Thực hiện phép chia đa thức 2x2+3x2+x+6 cho đa thức x+2
1.phân tích đa thức sau thành nhân tử
a) x^3+2x^2+x
b) xy+y^2-x-y
2.tìm x
a) 3x(x^2-4) = 0
b) x^2-4x+3 = 0
3.tính giá trị của đa thức
x^2-2xy+y^2-9z^2 tại x = 6, y = -4 ,z= 30
4.tìm a để đa thức x^3+x^2-x+a chia hết cho đa thức x+2
Bài 1:
a) x^3 + 2x^2 + x = x.(x^2+2x+1) = x.(x+1)^2
b) xy + y^2 - x - y
= y.(x+y) - (x+y)
= (x+y).(y-1)
Bài 2:
a) 3x.(x^2-4) = 0
3x.(x+2).(x-2) = 0
=> x = 0; x = -2; x = 2
b) x^2 - 4x + 3 = 0
x^2 - x - 3x + 3 = 0
x.(x-1) - 3.(x-1) = 0
(x-1).(x-3) = 0
=> x = 1; x = 3