cho p>0,q>0,cmr (p+2)(q+2)(p+q)>=10pq
1) cho: 4a^3-3a+(b-1)\(\sqrt{2b+1}\)=0
biết \(\frac{-1}{2}\)=<b=<0 . Cmr: \(\sqrt{2b+1}\)+2a=0
2)cho (4a^2+1)a+(b-3)\(\sqrt{5-2b}\)=0
biết a>=0 Cmr: 2b+4a^2=5
cho p^3+q^3=2. cmr 0<p+q<=2
Ta có:
2=(p+q)(p2−pq+q2)>02=(p+q)(p2−pq+q2)>0
Dễ thấy p2−pq+q2>0p2−pq+q2>0 nên p+q>0p+q>0 (1)(1)
Mặt khác với mọi p,qp,q là số thực thì p2+q2⩾2pqp2+q2⩾2pq suy ra pq⩽(p+q)24pq⩽(p+q)24
Do đó
2=(p+q)(p2−pq+q2)=(p+q)[(p+q)2−3pq]⩾(p+q)342=(p+q)(p2−pq+q2)=(p+q)[(p+q)2−3pq]⩾(p+q)34
→(p+q)3⩽8→p+q⩽2→(p+q)3⩽8→p+q⩽2 (2)(2)
Từ (1);(2) ta có đpcm
---------------------------------
P/s: làm thế có đúng không ạ
1) Cho \(a^3-3a^2+2=\sqrt{b^3+3b^2}\) với \(a\ge2\) , cmr \(a^2-2a=b+2\)
2) Cho \(4a^3-3a+\left(b-1\right)\sqrt{2b+1}=0\) với \(-\frac{1}{2}\le0\) , cmr \(\sqrt{2b+1}+2a=0\)
3) Cho \(\left(4a^2+1\right)a+\left(b-3\right)\sqrt{5-2b}=0\) , cmr \(2b+4a^2=5\) với \(a\ge0\)
4) Cho \(a^2b\sqrt{1+b^2}-\sqrt{1+a^2}=a^2b-a\) với \(ab\ge0\) , cmr \(ab=1\)
- Mng giúp em với ạ, em cảm ơn.
1.
Chú ý rằng:
\(\left(a^3-3a^2+2\right)^2=\left(a^2-2a-2\right)^3+3\left(a^2-2a-2\right)^2\)
Bạn sẽ giải quyết được bài toàn
2.
\(\Leftrightarrow8a^3-6a+\left(2b-2\right)\sqrt{2b+1}=0\)
\(\Leftrightarrow\left(2a\right)^3-3.\left(2a\right)+\left(2a+1\right)\sqrt{2a+1}-3\sqrt{2a+1}=0\)
Đặt \(\left\{{}\begin{matrix}2a=x\\\sqrt{2b+1}=y\end{matrix}\right.\) rồi ghép nhân tử là xong
3.
\(8a^3+2a+\left(2b-6\right)\sqrt{5-2b}=0\)
\(\Leftrightarrow\left(2a\right)^3+2a-\left(5-2b\right)\sqrt{5-2b}-\sqrt{5-2b}=0\)
Đặt \(\left\{{}\begin{matrix}2a=x\\\sqrt{5-2b}=y\end{matrix}\right.\)
4.
Câu này ko biết làm kiểu lớp 9, lớp 11 thì được :(
Trước hết từ điều kiện biện luận được \(a>0\)
Khi đó chia 2 vế cho \(a^2\)
\(b\sqrt{1+b^2}-\frac{1}{a^2}\sqrt{1+a^2}=b-\frac{1}{a}\)
\(\Leftrightarrow b\sqrt{1+b^2}-b=\frac{1}{a^2}\sqrt{1+a^2}-\frac{1}{a}\)
\(\Leftrightarrow b\sqrt{1+b^2}-b=\frac{1}{a}\sqrt{1+\frac{1}{a^2}}-\frac{1}{a}\)
Hàm đặc trưng \(f\left(x\right)=x\sqrt{1+x^2}-x\) đồng biến trên R \(\Rightarrow b=\frac{1}{a}\)
Cho a+b+c=0; x+y+z=0; \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\)CMR
\(ax^2+by^2+cz^2=0\)
Áp dụng : A = - A => A = 0
Từ \(a+b+c=0\Rightarrow\hept{\begin{cases}a=-\left(b+c\right)\\b=-\left(c+a\right)\\c=-\left(a+b\right)\end{cases}}\)
\(x+y+z=0\Rightarrow\hept{\begin{cases}x=-\left(y+z\right)\\y=-\left(x+z\right)\\z=-\left(x+y\right)\end{cases}\Rightarrow\hept{\begin{cases}x^2=\left(y+z\right)^2\\y^2=\left(x+z\right)^2\\z^2=\left(x+y\right)^2\end{cases}}}\)
Và \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=\frac{ayz+bxz+cxy}{xyz}=0\)\(\Rightarrow ayz+bxz+cxy=0\)
Ta có : \(x^2a+y^2b+x^2c=\)\(\left(y+z\right)^2a+\left(x+z\right)^2b+\left(x+y\right)^2c\)
= \(x^2\left(b+c\right)+y^2\left(c+a\right)+z^2\left(a+b\right)\)\(+2\left(ayz+bxz+cxy\right)\)
= \(-\left(x^2a+y^2b+z^2c\right)\) => \(x^2a+y^2b+x^2c=\) 0
Ta có: \(\hept{\begin{cases}a=-b-c\\x=-y-z\end{cases}}\)
\(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\)
\(\Leftrightarrow\frac{\left(-b-c\right)}{\left(-y-z\right)}+\frac{b}{y}+\frac{c}{z}=0\)
\(\Leftrightarrow2byz+2cyz+bz^2+cy^2=0\)
Ta lại có:
\(ax^2+by^2+cz^2=\left(-b-c\right)\left(-y-z\right)^2+by^2+cz^2\)
\(=-2byz-2cyz-bz^2-cy^2=0\)
Cho a+b+c = 0 ; x+y+z = 0 và \(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}=0\)
CMR : \(ax^2+by^2+cz^2=0\)
Có:
\(x+y+z=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}-x=y+z\\-y=x+z\\-z=x+y\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2=\left(y+z\right)^2\\y^2=\left(x+z\right)^2\\z^2=\left(x+y\right)^2\end{matrix}\right.\)
\(\Rightarrow ax^2+by^2+cz^2\)
\(=a\left(y+z\right)^2+b\left(x+z\right)^2+c\left(x+y\right)^2\)
\(=x^2\left(b+c\right)+y^2\left(a+c\right)+z^2\left(a+b\right)+2\left(ayz+bxz+cxy\right)\)
Mà \(a+b+c=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}b+c=-a\\a+c=-b\\a+b=-c\end{matrix}\right.\)
Đồng thời có: \(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}=0\)
\(\Leftrightarrow\dfrac{ayz+bxz+cxy}{xyz}=0\)
\(\Leftrightarrow ayz+bxz+cxy=0\)
Từ đây ta có:)
\(ax^2+by^2+cz^2=-ax^2-by^2-cz^2\)
\(\Rightarrow2\left(ax^2+by^2+cz^2\right)=0\)
\(\Rightarrow ax^2+by^2+cz^2=0\left(đpcm\right)\)
a, Cho a+b+c=0 CMR:\(a^3\)+\(a^2c-abc+b^2c+b^3=0\)
b, Cho 2(a+1)(b+1)=(a+b)(a+b+2) CMR:\(a^2+b^2=2\)
c, Cho \(a^2+c^2=2b^2\)CMR;
(a+b)(a+c)+(c+a)(c+b)=2(b+a)(b+c)
a. \(a^3+a^2c-abc+b^2c+b^3\)
<=> \(\left(a^3+b^3\right)+c\left(a^2-ab+b^2\right)\)
<=> (\(\left(a+b\right)\left(a^2-ab+b^2\right)+c\left(a^2-ab+b^2\right)\)
<=> \(\left(a+b+c\right)\left(a^2-ab+b^2\right)\)
vì a+b+c =0 => đpcm
b. 2(a+1)(b+1)=(a+b)(a+b+2)
<=> \(2\left(ab+a+b+1\right)=\)\(a^2+ab+2a+ab+b^2+2b\)
<=> \(2ab+2a+2b+2=a^2ab+2a+ab+b^2+2b\)
<=> \(a^2+b^2=2\)=> đpcm
a. a^3+a^2c-abc+b^2c+b^3a3+a2c−abc+b2c+b3
<=> \left(a^3+b^3\right)+c\left(a^2-ab+b^2\right)(a3+b3)+c(a2−ab+b2)
<=> (\left(a+b\right)\left(a^2-ab+b^2\right)+c\left(a^2-ab+b^2\right)(a+b)(a2−ab+b2)+c(a2−ab+b2)
<=> \left(a+b+c\right)\left(a^2-ab+b^2\right)(a+b+c)(a2−ab+b2)
vì a+b+c =0 => đpcm
b. 2(a+1)(b+1)=(a+b)(a+b+2)
<=> 2\left(ab+a+b+1\right)=2(ab+a+b+1)=a^2+ab+2a+ab+b^2+2ba2+ab+2a+ab+b2+2b
<=> 2ab+2a+2b+2=a^2ab+2a+ab+b^2+2b2ab+2a+2b+2=a2ab+2a+ab+b2+2b
<=> a^2+b^2=2a2+b2=2=> đpcm
Cho \(x,y,z>0\) và \(2x^2+3y^2-2z^2=0.\)
CMR: \(z\)là số lớn nhất.
Bài 1:Cho \(a+b+c=3\) \(CMR\) \(a^4+b^4+c^4\ge a^3+b^3+c^3\)
Bài 2:Cho \(a>0;b>0;c>0\) thỏa mãn \(a^2+b^2+c^2=1\)
\(CMR\)\(\frac{1}{a^2+b^2}+\frac{1}{b^2+c^2}+\frac{1}{a^2+c^2}\le\frac{a^3+b^3+c^3}{2abc}+3\)
Bài 1:Cách thông thường nhất là sos hoặc cauchy-Schwarz nhưng thôi ko làm:v Thử cách này cho nó mới dù rằng ko chắc
Giả sử \(a\ge b\ge c\Rightarrow c\le1\Rightarrow a+b=3-c\ge2\) và \(a\ge1\)
Ta có \(LHS=a^3.a+b^3.b+c^3.c\)
\(=\left(a^3-b^3\right)a+\left(b^3-c^3\right)\left(a+b\right)+c^3\left(a+b+c\right)\)
\(\ge\left(a^3-b^3\right).1+\left(b^3-c^3\right).2+3c^3\)
\(=a^3+b^3+c^3=RHS\)
Đẳng thức xảy ra khi a = b = c = 1
Bài 2:
\(BĐT\Leftrightarrow\frac{c^2}{a^2+b^2}+\frac{a^2}{b^2+c^2}+\frac{b^2}{c^2+a^2}\le\frac{a^3+b^3+c^3}{2abc}\)
Đến đây bớt 3/2 ở mỗi vế rồi dùng sos xem sao? Giờ phải ăn cơm đi học rồi, chiều về làm, ko được sẽ nghĩ cách khác.
tth_new
\(\frac{a^2}{b^2+c^2}\le\frac{a^2}{2bc}=\frac{a^3}{2abc}\)
1) cho x,y>0 và \(x^4+y^4=2\) CMR: \(\dfrac{x^2}{y}+\dfrac{y^2}{x}\ge2\)
2) cho x,y,z > 0 và \(x^2+y^2+z^2=3\) CMR: \(\dfrac{x^2}{y}+\dfrac{y^2}{z}+\dfrac{z^2}{x}\ge3\)