cm\(a+b+c\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\)
\(a^2+b^2+c^2\ge ab+ac+bc\) khi \(a=b=c\)
Cho a, b, c>0 và a+b+c\(\ge3\)
Cmr:
\(\dfrac{a^2}{a+\sqrt{bc}}+\dfrac{b^2}{b+\sqrt{ac}}+\dfrac{c^2}{c+\sqrt{ab}}\ge\dfrac{3}{2}\)
Áp dụng bđt cosi schwart ta có:
`VT>=(a+b+c)^2/(a+b+c+sqrt{ab}+sqrt{bc}+sqrt{ca})`
Dễ thấy `sqrt{ab}+sqrt{bc}+sqrt{ca}<a+b+c`
`=>VT>=(a+b+c)^2/(2(a+b+c))=(a+b+c)/2=3`
Dấu "=" `<=>a=b=c=1.`
a, b, c > 0. CM:
a)\(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge\sqrt{\frac{a^2+b^2}{2}}+\sqrt{\frac{b^2+c^2}{2}}+\sqrt{\frac{c^2+a^2}{2}}\)
b)\(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge\sqrt{a^2+b^2-ab}+\sqrt{b^2+c^2-bc}+\sqrt{c^2+a^2-ac}\)
a/ \(\frac{b}{b}.\sqrt{\frac{a^2+b^2}{2}}+\frac{c}{c}.\sqrt{\frac{b^2+c^2}{2}}+\frac{a}{a}.\sqrt{\frac{c^2+a^2}{2}}\)
\(\le\frac{1}{b}.\left(\frac{3b^2+a^2}{4}\right)+\frac{1}{c}.\left(\frac{3c^2+b^2}{4}\right)+\frac{1}{a}.\left(\frac{3a^2+c^2}{4}\right)\)
\(=\frac{1}{4}.\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\right)+\frac{3}{4}.\left(a+b+c\right)\)
Ta cần chứng minh
\(\frac{1}{4}.\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\right)+\frac{3}{4}.\left(a+b+c\right)\le\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\)
\(\Leftrightarrow\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\right)\ge\left(a+b+c\right)\)
Mà: \(\Leftrightarrow\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\right)\ge\frac{\left(a+b+c\right)^2}{a+b+c}=a+b+c\)
Vậy có ĐPCM.
Câu b làm y chang.
Cho a,b,c Là 3 cạnh tam giác . Chứng minh rằng
\(\dfrac{1}{\sqrt{ab+bc}}+\dfrac{1}{\sqrt{bc+ca}}+\dfrac{1}{\sqrt{ca+ab}}\ge\dfrac{1}{\sqrt{a^2+bc}}+\dfrac{1}{\sqrt{b^2+ac}}+\dfrac{1}{\sqrt{c^2+ab}}\)
Cho a,b,c là 3 số thực dương tùy ý Chứn minh rằng
\(\dfrac{a}{\sqrt{ab+b^2}}+\dfrac{b}{\sqrt{bc+b^2}}+\dfrac{c}{\sqrt{ac+a^2}}\ge\dfrac{3\sqrt{2}}{2}\)
\(\sum\dfrac{a}{\sqrt{ab+b^2}}=\sum\dfrac{a\sqrt{2}}{\sqrt{2b\left(a+b\right)}}\ge\sum\dfrac{2\sqrt{2}a}{2b+a+b}=2\sqrt{2}\sum\dfrac{a}{a+3b}\)
\(=2\sqrt{2}\sum\dfrac{a^2}{a^2+3ab}\ge\dfrac{2\sqrt{2}\left(a+b+c\right)^2}{a^2+b^2+c^2+3\left(ab+bc+ca\right)}\)
\(=\dfrac{2\sqrt{2}\left(a+b+c\right)^2}{\left(a+b+c\right)^2+ab+bc+ca}\ge\dfrac{2\sqrt{2}\left(a+b+c\right)^2}{\left(a+b+c\right)^2+\dfrac{1}{3}\left(a+b+c\right)^2}=\dfrac{3\sqrt{2}}{2}\)
Cho a,b,c là các số thực dương. CMR \(\sqrt{a^2+b^2-ab}+\sqrt{b^2+c^2-bc}\ge\sqrt{a^2+c^2+ac}\)
Ap dung bdt Mincopxki ta co
\(VT=\sqrt{\left(b-\frac{a}{2}\right)^2+\left(\frac{\sqrt{3}}{2}a\right)^2}+\sqrt{\left(\frac{c}{2}-b\right)^2+\left(\frac{\sqrt{3}}{2}c\right)^2}\)
\(\ge\sqrt{\left(b-\frac{a}{2}+\frac{c}{2}-b\right)^2+\frac{3}{4}\left(a+c\right)^2}=\sqrt{\left(\frac{c-a}{2}\right)^2+\frac{3}{4}\left(a+c\right)^2}=\sqrt{a^2+c^2+ac}=VP\)
1) Cho a, b, c>0 và a+b+c=3. Chứng minh rằng: \(\frac{a}{b^3+ab}+\frac{b}{c^3+bc}+\frac{c}{a^3+ac}\ge\frac{3}{2}\)
2) Cho a, b, c >0 thỏa mãn: ab+ac+bc+abc=4. Chứng minh rằng: \(\sqrt{ab}+\sqrt{ac}+\sqrt{bc}\le3\)
1) \(\Sigma\frac{a}{b^3+ab}=\Sigma\left(\frac{1}{b}-\frac{b}{a+b^2}\right)\ge\Sigma\frac{1}{a}-\Sigma\frac{1}{2\sqrt{a}}=\Sigma\left(\frac{1}{a}-\frac{2}{\sqrt{a}}+1\right)+\Sigma\frac{3}{2\sqrt{a}}-3\)
\(\ge\Sigma\left(\frac{1}{\sqrt{a}}-1\right)^2+\frac{27}{2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)}-3\ge\frac{27}{2\sqrt{3\left(a+b+c\right)}}-3=\frac{3}{2}\)
2.
Vỉ \(ab+bc+ca+abc=4\)thi luon ton tai \(a=\frac{2x}{y+z};b=\frac{2y}{z+x};c=\frac{2z}{x+y}\)
\(\Rightarrow VT=2\Sigma_{cyc}\sqrt{\frac{ab}{\left(b+c\right)\left(c+a\right)}}\le2\Sigma_{cyc}\frac{\frac{b}{b+c}+\frac{a}{c+a}}{2}=3\)
Cho o dong 2 la x,y,z nhe,ghi nham
cho a,b,c thỏa mãn a+b+c=1
chứng minh :
\(\sqrt{a^2+ab+b^2}+\sqrt{b^2+bc+c^2}+\sqrt{c^2+ac+a^2}\ge\sqrt{3}\)
BĐT <=> (nhân cả 2 vế với căn 12)
\(\sqrt{\left(1+1+4\right)\left(2a^2+2ab+2b^2\right)}+...\ge\sqrt{3.2.\left(1+1+4\right)}=6\)
có : 2a^2 +2ab + 2b^2 = a^2 + (a+b)^2 + b^2
=> (a^2 + (a+b)^2 + b^2)(1+4+1) ≥ (a+2a+2b+b)^2 ( theo bđt cauchy-schwarz 2 bộ số)
=> căn[(a^2 + (a+b)^2 + b^2)(1+4+1)] ≥ 3a+3b
CMTT với 2 cái căn còn lại
=> VT ≥ 6(a+b+c) = 6 = VP (đpcm)
dấu bằng a=b=c=1/3
\(\sqrt{a^2+ab+b^2}=\sqrt{\frac{3}{4}\left(a+b\right)^2+\frac{1}{4}\left(a-b\right)^2}\ge\frac{\sqrt{3}}{2}\left(a+b\right)\)
Tương tự hai bđt còn lại và cộng theo vế ta có đpcm.
cho a,b,c là 3 số thực bất kỳ. CMR \(\sqrt{a^2+ab+b^2}+\sqrt{a^2+ac+c^2}\ge\sqrt{b^2+bc+c^2}\)
Cho a,b,c>0. Cmr:
\(\frac{a}{\sqrt{ab+b^2}}+\frac{b}{\sqrt{bc+b^2}}+\frac{c}{\sqrt{ac+c^2}}\ge\frac{3\sqrt{2}}{2}\)