Bài 9: Biến đổi các biểu thức hữu tỉ. Giá trị của phân thức

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Only C

cm\(a+b+c\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\)

\(a^2+b^2+c^2\ge ab+ac+bc\) khi \(a=b=c\)

 Mashiro Shiina
17 tháng 10 2017 lúc 22:34

Áp dụng bất đẳng thức \(AM-GM\) cho 2 số dương ta có:

\(\left\{{}\begin{matrix}\dfrac{a+b}{2}\ge\sqrt{ab}\\\dfrac{b+c}{2}\ge\sqrt{bc}\\\dfrac{a+c}{2}\ge\sqrt{ac}\end{matrix}\right.\)

Cộng theo 3 vế ta có:

\(\dfrac{a+b}{2}+\dfrac{b+c}{2}+\dfrac{a+c}{2}\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\)

\(\Rightarrow\dfrac{1}{2}a+\dfrac{1}{2}b+\dfrac{1}{2}b+\dfrac{1}{2}c+\dfrac{1}{2}a+\dfrac{1}{2}c\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\)

\(\Rightarrow a+b+c\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\left(đpcm\right)\)

 Mashiro Shiina
17 tháng 10 2017 lúc 22:42

\(a=b=c\Leftrightarrow\left\{{}\begin{matrix}a=b\\b=c\\a=c\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(a-c\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a^2+b^2=2ab\\b^2+c^2=2bc\\a^2+c^2=2ac\end{matrix}\right.\)

Cộng theo 3 vế ta có:

\(a^2+b^2+b^2+c^2+a^2+c^2=2ab+2bc+2ac\)

\(\Rightarrow2\left(a^2+b^2+c^2\right)=2\left(ab+bc+ac\right)\)

\(\Rightarrow a^2+b^2+c^2=ab+bc+ac\)

Ngược lại,khi \(a\ne b\ne c\) thì \(\left\{{}\begin{matrix}a^2+b^2>2ab\\b^2+c^2>2bc\\a^2+c^2>2ac\end{matrix}\right.\) ta có thể dễ dàng cm được \(a^2+b^2+c^2>ab+bc+ac\)


Các câu hỏi tương tự
Thiên thần chính nghĩa
Xem chi tiết
Only C
Xem chi tiết
Hung Hai
Xem chi tiết
Min
Xem chi tiết
Han Jang Wool
Xem chi tiết
Bình Nguyễn
Xem chi tiết
Trung Nguyen
Xem chi tiết
Mai Lan Anh
Xem chi tiết
Mai Thành Đạt
Xem chi tiết