9x2+6xy+y2-25
Gấp ạ plz hẻlp
B1:
a) 15x + 10 - 4x( 3x + 2 ) = 0
b) 2x ( x - 6 ) + x2 - 36 = 0
B2:
a) 7x2 - 14xy + 7y2
b) xy - 3x + 2y - 6
c) 9x2 + 6xy - 25 + y2
9x2-6xy+y2-4
giúp mình với mọi người ơi
(9x2-6xy+y2)-42
=(3x-y)2-42
=(3x-y-4)(3x-y+4)
\(=\left(9x^2-6xy+y^2\right)-2^2\)
\(=\left(3x-y\right)^2-2^2\)
\(=\left(3x-y-2\right)\left(3x-y+2\right)\)
a.4x2+28x+49
b.16y2-8y+1
c.4a2+20ab+25b2
d.9x2-6xy+y2
\(a,4x^2+28x+49=\left(2x\right)^2+2.2x.7+7^2=\left(2x+7\right)^2\\ b,16y^2-8y+1=\left(4y\right)^2-2.4y.1+1^2=\left(4y-1\right)^2=\left(1-4y\right)^2\\ 4a^2+20ab+25b^2=\left(2a\right)^2+2.2a.5b+\left(5b\right)^2=\left(2a+5b\right)^2\\ d,9x^2-6xy+y^2=\left(3x\right)^2-2.3x.y+y^2=\left(3x-y\right)^2=\left(y-3x\right)^2\)
Bài 2: Điền vào chỗ trống :
a, (❏ + 8xy + y2) = (❏ + ❏)
b, (4x2- 2xy + ❏) = (❏ - ❏)
c, (x2 + x + ❏) = (❏ + ❏)
d, (9x2 - 6xy + ❏) = (❏ - ❏)
a) \(16x^2+8xy+y^2=\left(4x+y\right)^2\)
b) \(4x^2-2xy+\dfrac{1}{4}y^2=\left(2x-\dfrac{1}{2}y\right)^2\)
c) \(x^2+x+\dfrac{1}{4}=\left(x+\dfrac{1}{2}\right)^2\)
d) \(9x^2-6xy+y^2=\left(3x-y\right)^2\)
Viết các đa thức sau dưới dạng bình phương của một tổng hay một hiệu
a. y 2 + 2 y + 1
b. 9 x 2 + y 2 – 6 x y
c. 25 a 2 + 4 b 2 + 20 a b
Phân tích các đa thức sau thành nhân tử rồi tính giá trị đa thức:
a) A = 9x2 + 15x + 6xy + y2 + 5y biết 3x + y = 0
b) B = 25x2 – y4 – 5x + y2
Lời giải:
a. $A=9x^2+15x+6xy+y^2+5y=(9x^2+6xy+y^2)+(15x+5y)$
$=(3x+y)^2+5(3x+y)=0^2+5.0=0$
b. $25x^2-y^4-5x+y^2=(25x^2-y^4)-(5x-y^2)=(5x-y^2)(5x+y^2)-(5x-y^2)$
$=(5x-y^2)(5x+y^2-1)$
Bài 1: Phân tích đa thức thành nhân tử
a/ 36x2 - 12x + 1
b/ 5x3y + 10x2y + 5xy
c/ 9x2 – 6xy + y2 – 25
d/ x2 + 8x + 7
a) \(=\left(6x\right)^2-2.6x.1+1=\left(6x-1\right)^2\)
b) \(=5xy\left(x^2+2x+1\right)=5xy\left(x+1\right)^2\)
c) \(=\left(3x-y\right)^2-25=\left(3x-y-5\right)\left(3x-y+5\right)\)
d) \(=x\left(x+1\right)+7\left(x+1\right)=\left(x+1\right)\left(x+7\right)\)
a,x3+3x2+3x+1
b,x2+6x+9
c,-x3+9x2-27x+27
d,x2+4x+4
k,10x-25-x2
f,(x+y)2-9x2
g,8x3+42x2y+16xy2+6xy+y3
a) \(x^3+3x^2+3x+1=x^2+3\cdot x^2\cdot1+3\cdot x\cdot1^2+1^3=\left(x-1\right)^3\)
b) \(x^2+6x+9=x^2+2\cdot3\cdot x+3^2=\left(x+3\right)^2\)
c) \(-x^3+9x^2-27x+27\)
\(=-\left(x^3-9x^2+27x-27\right)\)
\(=-\left(x^3-3\cdot3\cdot x^2+3\cdot3^2\cdot x-3^3\right)=-\left(x-3\right)^3\)
d) \(x^2+4x+4=x^2+2\cdot2\cdot x+2^2=\left(x+2\right)^2\)
k) \(10x-25-x^2=-x^2+10x-25=-\left(x^2-10x+25\right)\)
\(=-\left(x^2-2\cdot5\cdot x+5^2\right)=-\left(x-5\right)^2\)
f) \(\left(x+y\right)^2-9x^2=\left(x-y\right)^2-\left(3x\right)^2=\left[\left(x-y\right)-3x\right]\left[\left(x-y\right)+3x\right]\)
\(=\left(x-y-3x\right)\left(x-y+3x\right)=\left(-2x-y\right)\left(4x-y\right)\)
1) Rut gon cac bieu thuc sau :
a) (x-3)(x2+3x+ 9)-(54+x3)
b) (3x+y)(9x2-3xy +y2)-(3x-y)(9x2+3xy+y2)
2, Dien cac don thuc thich hop vao cho trong
a, (x+3y) (... - ... + ...) = x^3 +27y^3
b, (2x- ....) (... + 6xy + ... +...) = 8x^3 - 27y^3
\(1.\)
\(a.\)
\(\left(x-3\right)\left(x^2+3x+9\right)-\left(54+x^3\right)\)
\(=\left(x^3-3^3\right)-\left(54+x^3\right)\)
\(=x^3-27-54-x^3\)
\(=-81\)
\(b.\)
\(\left(3x+y\right)\left(9x^2-3xy+y^2\right)-\left(3x-y\right)\left(9x^2+3xy+y^2\right)\)
\(=\left(27x^3+y^3\right)-\left(27x^3-y^3\right)\)
\(=27x^3+y^3-27x^3+y^3\)
\(=2y^3\)
\(2.\)
\(a.\)
\(\left(x+3y\right)\left(x^2-3xy+9y^2\right)=x^3+27y^3\)
\(b.\)
\(\left(2x-3y\right)\left(4x^2+6xy+9y^3\right)=8x^3-27y^3\)
1) a) \(\left(x-3\right)\left(x^2+3x+9\right)-\left(54+x^3\right)\)
\(=\left(x^3-3^3\right)-\left(54+x^3\right)\\ =\left(x^3-27\right)-54-x^3\\ =-27-54\\ =-81\)
b) \(\left(3x+y\right)\left(9x^2-3xy+y^2\right)-\left(3x-y\right)\left(9x^2+3xy+y^2\right)\)
\(=\left[\left(3x\right)^3+y^3\right]-\left[\left(3x\right)^3-y^3\right]\\ =2y^3\)
2) a) \(\left(x+3y\right)\left(x^2-3xy+9y^2\right)=x^3+27y^3\)
b) \(\left(2x-3y\right)\left(4x^2+6xy+9y^2\right)=8x^3-27y^3\)