cho (a+b+c)^2+12=4(a+b+c)+2(ab+bc+ac)
Cm : a=b=c=2
Cho ba điểm A, B, C cùng nằm trên một đường thẳng. Hỏi điểm nào nằm giữa hai điểm còn lại, nếu:
a) AB = l cm, BC = 2 cm, CA = 3 cm;
b) AB = 7 cm, BC = 3 cm, AC = 4 cm;
c) AB = 4cm, AC = CB = 2cm;
d)AB = AC = 1 2 BC.
a) Nhận thấy AB + BC = AC nên điểm B nằm giữa hai điểm A và C
b, c) HS tự làm.
d) Nhận thấy AB + AC = 1 2 BC + 1 2 BC = BC nên điểm A nằm giữa hai điểm B và C.
Bài 1: Cho tam giác ABC cân tại A có AB=12 cm, BC=10 cm. Kẻ AH vuông góc với BC. Tính AH.
Bài 2: Cho tam giác ABC vuông tại A có BC=26 cm, 2 cạnh AB và AC tỉ lệ với 5 và 12. Tính AB và AC.
Bài 3: Cho tam giác ABC nhọn, kẻ đường cao AH. Biết AB=13 cm, AH= 12 cm, HC=16 cm. Tính AC và BC.
Bài 1 :
Ta có : \(\Delta ABC\) cân tại A (gt)
Mà có : AH là đường cao trong tam giác cân
=> AM đồng thời là đường trung trực trong tam giác cân
=> \(BH=HC\) (tính chất đường trung trực)
Nên có : \(BH=\dfrac{1}{2}BC=\dfrac{1}{2}.10=5\left(cm\right)\)
Xét \(\Delta ABH\) vuông tại H có :
\(AH^2=BH^2+AB^2\) (Định lí PITAGO)
=> \(AH^2=5^2+12^2\)
=> \(AH^2=169\)
=> \(AH=\sqrt{169}=13\left(cm\right)\)
Bài 3 :
Xét \(\Delta AHC\) vuông tại H có :
\(AC^2=AH^2+HC^2\)
=> \(AC^2=12^2+16^2\)
=> \(AC^2=400\)
=> \(AC=\sqrt{400}=20\)(cm)
Xét \(\Delta AHB\) vuông tại H có :
\(BH^2=AB^2-AH^2\)
=> \(BH^2=13^2-12^2\)
=> \(BH^2=25\)
=> \(BH=\sqrt{25}=5\left(cm\right)\)
Nên ta có : \(BC=BH+HC=5+16=21\left(cm\right)\)
cho a+b+c=0.cm: a^4+b^4+c^4=2(ab+bc+ac)
Cho a;b;c>=0 thỏa mãn : \(3\left(a^2+b^2+c^2\right)+ab+bc+ac=12\)
Tìm min max của \(P=\dfrac{a^2+b^2+c^2}{a+b+c}+ab+bc+ac\)
Cho (a-b)2 +(c-b)2 +(a-c)2 = 4(a2 +b2 +c2 -ab-ac-bc) . CM: a=b=c
Cho (a+b+c)2+12=4(a+b+c)+2(ab+bc+ac).Chứng minh rằng a=b=c=2
phân tích vế trái từ vế trái cho vế phải vậy là ra
Cho a,b,c là số bất kì
Cm: a ^2 + b ^2 + c^2 lớn hơn bằng ab + ac + bc
a^4 + b^4 + c^4 lớn hơn bằng abc (a+b+c)
\(a^2+b^2+c^2\ge ab+ac+bc\)
\(\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+2ac+2bc\)
\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ac+a^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)( luôn đúng )
Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)
a)Áp dụng BĐT AM-GM: \(a^2+b^2\ge2ab;b^2+c^2\ge2bc;c^2+a^2\ge2ca\)
Cộng theo vế suy ra \(2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)
\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca^{\left(đpcm\right)}\)
Dấu "=" xảy ra tại a = b = c
Cho a+b+c=2 và ab+bc+ac=1. CM: \(0\le a,b,c\le\dfrac{4}{3}\)
Ta có \(a+b+c=2\Leftrightarrow b+c=2-a\).
Do đó \(1=ab+bc+ca=a\left(b+c\right)+bc=a\left(2-a\right)+bc\Leftrightarrow bc=a^2-2a+1\).
Áp dụng bất đẳng thức AM - GM ta có:
\(4bc\le\left(b+c\right)^2\Leftrightarrow4\left(a^2-2a+1\right)\le\left(2-a\right)^2\Leftrightarrow3a^2-4a\le0\Leftrightarrow a\left(3a-4\right)\le0\Leftrightarrow0\le a\le\dfrac{4}{3}\).
Tương tự với b, c. Ta có đpcm.
Cho ba điểm A , B , C . Biết rằng AB = 2 cm , BC = 6 cm , AC = 4 cm . Chứng tỏ rằng A , B , C thẳng hàng
Ta có: AB+AC=BC<=>2+4=6
Theo BĐTTG, tổng độ dài 2 đoạn thẳng = độ dài đoạn thứ 3 thì 3 điểm đó thẳng hàng
Vậy A,B,C thẳng hàng