Bài 1 :
Ta có : \(\Delta ABC\) cân tại A (gt)
Mà có : AH là đường cao trong tam giác cân
=> AM đồng thời là đường trung trực trong tam giác cân
=> \(BH=HC\) (tính chất đường trung trực)
Nên có : \(BH=\dfrac{1}{2}BC=\dfrac{1}{2}.10=5\left(cm\right)\)
Xét \(\Delta ABH\) vuông tại H có :
\(AH^2=BH^2+AB^2\) (Định lí PITAGO)
=> \(AH^2=5^2+12^2\)
=> \(AH^2=169\)
=> \(AH=\sqrt{169}=13\left(cm\right)\)
Bài 3 :
Xét \(\Delta AHC\) vuông tại H có :
\(AC^2=AH^2+HC^2\)
=> \(AC^2=12^2+16^2\)
=> \(AC^2=400\)
=> \(AC=\sqrt{400}=20\)(cm)
Xét \(\Delta AHB\) vuông tại H có :
\(BH^2=AB^2-AH^2\)
=> \(BH^2=13^2-12^2\)
=> \(BH^2=25\)
=> \(BH=\sqrt{25}=5\left(cm\right)\)
Nên ta có : \(BC=BH+HC=5+16=21\left(cm\right)\)