Tìm Max của B=\(\dfrac{3\left|x\right|+5}{4\left|x\right|+1}\)
cho hàm số y = f(x) liên tục trên R sao cho \(\max\limits_{\left[-8;\dfrac{8}{3}\right]}=5\). xét hàm số \(g\left(x\right)=2f\left(\dfrac{1}{3}x^3-x^2-3x+1\right)+m\). tìm tất cả các giá trị thực của tham số m để \(\max\limits_{\left[-2;4\right]}g\left(x\right)=-20\)
Tìm GTNN của các hàm số sau:
a) \(f\left(x\right)=5+x+\dfrac{1}{x}\left(x>4\right)\)
b) \(g\left(x\right)=\left(x+2\right)\left(3+\dfrac{1}{x}\right)\left(x>0\right)\)
c) \(h\left(x\right)=\left(x+1\right)^2+\left(\dfrac{x^2}{x+1}+2\right)^2\left(x\ne-1\right)\)
c) \(h\left(x\right)=\left(x+1\right)^2+\left(\dfrac{x^2+2x+2}{x+1}\right)^2=\left(x+1\right)^2+\left(x+1+\dfrac{1}{x+1}\right)^2=2\left(x+1\right)^2+\dfrac{1}{\left(x+1\right)^2}+2\ge_{AM-GM}2\sqrt{2}+2\).
Đẳng thức xảy ra khi \(2\left(x+1\right)^2=\dfrac{1}{\left(x+1\right)^2}\Leftrightarrow x=\pm\sqrt{\dfrac{1}{2}}-1\).
b) \(g\left(x\right)=\dfrac{\left(x+2\right)\left(x+3\right)}{x}=\dfrac{x^2+5x+6}{x}=\left(x+\dfrac{6}{x}\right)+5\ge_{AM-GM}2\sqrt{6}+5\).
Đẳng thức xảy ra khi x = \(\sqrt{6}\).
Câu a muốn có min thì đề bài phải là \(x\ge4\) (có dấu "=")
Còn \(x>4\) thì chắc là đề sai
Tìm Max, Min của hàm số:
1) \(y=\dfrac{x+1+\sqrt{x-1}}{x+1+2\sqrt{x-1}}\)
2) \(y=\sin^{2016}x+\cos^{2016}x\)
3) \(y=2\cos x-\dfrac{4}{3}\cos^3x\) trên \(\left[0;\dfrac{\pi}{2}\right]\)
4) \(y=\sin2x-\sqrt{2}x+1,x\in\left[0;\dfrac{\pi}{2}\right]\)
5) \(y=\dfrac{4-cos^2x}{\sqrt{sin^4x+1}},x\in\left[-\dfrac{\pi}{3};\dfrac{\pi}{3}\right]\)
tìm x:
\(a,5^x.\left(5^2\right)^3=625\)
\(b,\left(\dfrac{12}{15}\right)^x=\left(\dfrac{5}{4}\right)^{-2}-\left(\dfrac{-3}{5}\right)^4\)
\(c,\left(\dfrac{-3}{4}\right)^{3x-1}=\dfrac{256}{81}\)
\(d,172x^2-7^9:98^3=2^{-3}\)
Tìm x :
1) \(\left(-0,75x+\dfrac{5}{2}\right).\dfrac{4}{7}-\left(-\dfrac{1}{3}\right)=-\dfrac{5}{6}\)
2) \(\left(4x-9\right)\left(2,5+\dfrac{-7}{3}x\right)=0\)
3) \(\left|x-\dfrac{3}{4}\right|-\dfrac{1}{2}=0\)
4)\(\left(\dfrac{3}{5}-\dfrac{2}{3}x\right)^3=\dfrac{-64}{125}\)
3: \(\left|x-\dfrac{3}{4}\right|-\dfrac{1}{2}=0\)
\(\Leftrightarrow\left|x-\dfrac{3}{4}\right|=\dfrac{1}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{3}{4}=\dfrac{1}{2}\\x-\dfrac{3}{4}=-\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{4}\\x=\dfrac{1}{4}\end{matrix}\right.\)
Xét x,y là hai số thực dương thay đổi thoả mãn điều kiện xy = 1. Tìm max của biểu thức A = \(\dfrac{2.\left(x^3+y^3\right)}{\left(x^4+y^2\right).\left(x^2+y^4\right)}\)
\(A=\dfrac{2\left(x^3+y^3\right)}{\left(x^4+y^2\right)\left(x^2+y^4\right)}=2.\dfrac{\left(x^3+y^3\right)}{x^4y^4+x^2y^2+x^6+y^6}\)
\(=2.\dfrac{\left(x^3+y^3\right)}{1+1+x^6+y^6}=2.\dfrac{x^3+y^3}{x^6+y^6+2x^3y^3}=2.\dfrac{x^3+y^3}{\left(x^3+y^3\right)^2}=\dfrac{2}{x^3+y^3}\left(1\right)\)
Áp dụng bất đẳng thức Cauchy ta có:
\(x^3+y^3+1\ge3\sqrt{xy.1}=3\)
\(\Rightarrow x^3+y^3\ge2\Rightarrow\dfrac{2}{x^3+y^3}\le1\left(2\right)\)
\(\left(1\right),\left(2\right)\Rightarrow A\le1\)
Dấu "=" xảy ra khi x=y=1.
Vậy MaxA là 1, đạt được khi x=y=1.
tìm x biết:
a) \(5^x.\left(5^3\right)^2=625\)
b)\(\left(\dfrac{12}{15}\right)^x=\left(\dfrac{5}{3}\right)^{-5}-\left(-\dfrac{3}{5}\right)^4\)
c)\(\left(-\dfrac{3}{4}\right)^{3x-1}=\dfrac{256}{81}\)
d)\(172x^2-7^9:98^3=2^{-3}\)
tìm max \(A=\dfrac{x^4}{\left(x+1\right)^6}\left(x>0\right)\)
\(A=\left(\dfrac{x^2}{\left(x+1\right)^3}\right)^2=\left(\dfrac{x^2}{x^3+3x^2+3x+1}\right)^2=\left(\dfrac{1}{x+\dfrac{3}{x}+\dfrac{1}{x^2}+3}\right)^2\)
\(A=\left(\dfrac{1}{x+\dfrac{4}{x}+\left(\dfrac{1}{x}-\dfrac{1}{2}\right)^2+\dfrac{11}{4}}\right)^2\le\left(\dfrac{1}{x+\dfrac{4}{x}+\dfrac{11}{4}}\right)^2\)
\(A\le\left(\dfrac{1}{2\sqrt{\dfrac{4x}{x}}+\dfrac{11}{4}}\right)^2=\dfrac{16}{729}\)
Dấu "=" xảy ra khi \(x=2\)
Tìm x biết:
\(a,\left(x-\dfrac{3}{4}\right)+50\%=\dfrac{1}{6}\)
\(b,\dfrac{1}{2}x-\dfrac{5}{6}x=\dfrac{7}{2}\)
\(c,\left(4-x\right)\left(3x+5\right)=0\)
\(d,\dfrac{x}{16}=\dfrac{50}{32}\)
\(e,\left(2x-3\right)+\dfrac{3}{2}=-\dfrac{1}{4}\)
a: =>x-3/4=1/6-1/2=1/6-3/6=-2/6=-1/3
=>x=-1/3+3/4=-4/12+9/12=5/12
b: =>x(1/2-5/6)=7/2
=>-1/3x=7/2
hay x=-21/2
c: (4-x)(3x+5)=0
=>4-x=0 hoặc 3x+5=0
=>x=4 hoặc x=-5/3
d: x/16=50/32
=>x/16=25/16
hay x=25
e: =>2x-3=-1/4-3/2=-1/4-6/4=-7/4
=>2x=-7/4+3=5/4
hay x=5/8