Biết Ax \(//\) By
Tính ^ABC ( 2 cách)
Bài 3.Tính giá trị của biểu thức sau:
a. A= ax-ay-bx+by, biết: a-b=-50 và x-y=2
b. B= ax+ay-bx-by, biết: a-b=-1 và x+y=-100
=
Bài 3:
a) Ta có: \(A=ax-ay-bx+by\)
\(=a\left(x-y\right)-b\left(x-y\right)\)
\(=\left(x-y\right)\left(a-b\right)\)
Thay a-b=-50 và x-y=2 vào biểu thức A, ta được:
\(A=-50\cdot2=-100\)
Vậy: Khi a-b=-50 và x-y=2 thì A=-100
b) Ta có: \(B=ax+ay-bx-by\)
\(=a\left(x+y\right)-b\left(x+y\right)\)
\(=\left(x+y\right)\left(a-b\right)\)
Thay a-b=-1 và x+y=-100 vào biểu thức B, ta được:
\(B=-1\cdot\left(-100\right)=100\)
Vậy: Khi a-b=-1 và x+y=-100 thì B=100
biết Ax //Cy góc ABC =?
Kẻ Bz//Ax//Cy
\(\Rightarrow\widehat{ABC}=\widehat{ABz}+\widehat{zBC}\\ =\left(180^0-\widehat{xAB}\right)+\left(180^0-\widehat{yCB}\right)\left(trong.cùng.phía\right)\\ =50^0+32^0=82^0\)
bn có ghi sai đề bài ko đó , tui thấy nó hơi sai sai
tìm các số x,y,z biết ax=by=cz=8/abc (a,b,c khác 0 )
Ta có: ax+by+cz=2S(ABC)
Áp dụng BĐT Bunhia ta có:
(ax+by+cz)(a/x+b/y+c/z)\geq(a+b+c)^2
\Rightarrowa/x+b/y+c/z\geq((a+b+c)^2)/(ax+by+cz)
\Leftrightarrowa/x+b/y+c/z\geq((a+b+c)^2)/2S(ABC)
Vậy GTNN của a/x+b/y+c/z là ((a+b+c)^2)/2S(ABC)
\LeftrightarrowM là giao điểm các đường phân giác của tam giác ABC
Sửa lần cuối bởi BQT: 16 Tháng sáu 2013
tính M=1/(x+2)+1/(Y+2)+1/(z+2) biết 2*a=b*y+c*z; 2b=ax+cz ;2c=ax+by và a+b+c=0
ta có: 2a+2b+2c=by+cz+ax+cz+ax+by
suy ra: 2(a+b+c)=2(ax+by+cz)
a+b+c=ax+by+cz
a+b+c=ax+2a(vì by+cz=2a)
a+b+c=a(x+2)
1/x+2=a/a+b+c
Tương tự: 1/y+2=b/a+b+c
1/z+2=c/a+b+c
suy ra: M=a/(a+b+c)+b/(a+b+c)+c/(a+b+c)=(a+b+c)/(a+b+c)=1
tính M=1/(x+2)+1/(Y+2)+1/(z+2) biết 2*a=b*y+c*z; 2b=ax+cz ;2c=ax+by và a+b+c=0
toán lớp 1 mà mình lớp 6 ko làm được
tính M=1/(x+2)+1/(Y+2)+1/(z+2) biết 2*a=b*y+c*z; 2b=ax+cz ;2c=ax+by và a+b+c=0
Cho ax+by+cz=0; a+b+c=\(\dfrac{1}{100}\); ax2+by2+cz2 khác 0. Tính\(S=\dfrac{\text{ax^2+by^2+cz^2}}{ab\left(x-y\right)^2+bc\left(y-z\right)^2+ca\left(z-x\right)^2}\)
Tính giá trị biêu thuc:
a/ ax+ay+bx+by biết a+b=-2,x+y=17
b/ax-ay+bx-by biết a+b=-7,x-y=-1
a) \(ax+ay+bx+by=a\left(x+y\right)+b\left(x+y\right)=\left(a+b\right)\left(x+y\right)=\left(-2\right).17=-34\)
b) \(ax-ay+bx-by=a\left(x-y\right)+b\left(x-y\right)=\left(a+y\right)\left(x-y\right)=\left(-7\right).\left(-1\right)=7\)