Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tâm Anh Doris
Xem chi tiết
Kiệt Nguyễn
29 tháng 2 2020 lúc 16:10

\(5x^2-\left(3-2x\right)^2\ge4\)

\(\Leftrightarrow5x^2-\left(4x^2-12x+9\right)\ge4\)

\(\Leftrightarrow x^2+12x-9\ge4\)

\(\Leftrightarrow x^2+12x-13\ge0\)

Đến đây giải bpt bậc hai nha!

Khách vãng lai đã xóa
응웬 티 하이
Xem chi tiết
Phạm Minh Quang
Xem chi tiết
Akai Haruma
11 tháng 3 2021 lúc 3:14

** Bài này chỉ đúng khi $a,b,c$ không âm thôi bạn nhé.

Lời giải:
Theo BĐT Schur:

$a^3+b^3+c^3+3abc\geq ab(a+b)+bc(b+c)+ca(c+a)$

$\Rightarrow a^3+b^3+c^3+6abc\geq (a+b+c)(ab+bc+ac)$

$\Leftrightarrow a^3+b^3+c^3+3(a+b+c)(ab+bc+ac)+6abc\geq 4(a+b+c)(ab+bc+ac)$
$\Leftrightarrow a^3+b^3+c^3+3[(a+b)(b+c)(c+a)+abc]+6abc\geq 4(a+b+c)(ab+bc+ac)$

$\Leftrightarrow a^3+b^3+c^3+3(a+b)(b+c)(c+a)+9abc\geq 4(a+b+c)(ab+bc+ac)$

$\Leftrightarrow (a+b+c)^3+9abc\geq 4(a+b+c)(ab+bc+ac)$

Dấu "=" xảy ra khi $a=b=c$

Phương Nguyễn Ngọc Mai
Xem chi tiết
Nguyễn Phan Ngọc Tú
Xem chi tiết
Thắng Nguyễn
14 tháng 10 2016 lúc 6:30

\(P=\frac{1}{x^3+y^3}+\frac{1}{xy}\)

Ta có:

\(x+y=1\Rightarrow\left(x+y\right)^3=1\)

\(\Rightarrow x^3+y^3+3xy\left(x+y\right)=1\)

\(\Rightarrow x^3+y^3+3xy=1\)

\(\Rightarrow P=\frac{x^3+y^3+3xy}{x^3+y^3}+\frac{x^3+y^3+3xy}{xy}\)\(=4+\frac{3xy}{x^3+y^3}+\frac{x^3+y^3}{xy}\left(1\right)\)

Áp dụng Bđt Cô si ta có:

\(\frac{3xy}{x^3+y^3}+\frac{x^3+y^3}{xy}\ge2\sqrt{\frac{3xy}{x^3+y^3}\cdot\frac{x^3+y^3}{xy}}=2\sqrt{3}\)

\(\Rightarrow P\ge4+2\sqrt{3}\)(Đpcm)

Dấu = khi \(\hept{\begin{cases}x+y=1\\x^3+y^3=\sqrt{3xy}\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y=1\\1-3xy=\sqrt{3xy}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x+y=1\\3\sqrt{xy}=\frac{-1+\sqrt{5}}{2}\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x+y=1\\xy=\frac{6-2\sqrt{5}}{12}\end{cases}}\)

\(\Leftrightarrow x^2-x+\frac{6-2\sqrt{5}}{12}=0\)\(\Leftrightarrow x,y=\frac{1\pm\sqrt{\frac{2\sqrt{5}-3}{3}}}{2}\)

hoang phuc
13 tháng 10 2016 lúc 21:54

chiu

tk nhe

xin do

bye

Hưng Vũ
Xem chi tiết
Thiều Khánh Vi
Xem chi tiết
Nguyễn Việt Lâm
15 tháng 11 2019 lúc 21:52

ĐKXĐ: \(x\ge1\)

Dễ dàng nhận ra \(\sqrt{x+3}+\sqrt{x-1}>0\) nên BPT tương đương:

\(x-3+\sqrt{\left(x-1\right)\left(x+3\right)}\ge\sqrt{x+3}+\sqrt{x-1}\)

Đặt \(\sqrt{x+3}+\sqrt{x-1}=a>0\)

\(\Rightarrow a^2=2x+2+2\sqrt{\left(x-1\right)\left(x+3\right)}\)

\(\Rightarrow x+\sqrt{\left(x-1\right)\left(x+3\right)}=\frac{a^2-2}{2}\)

BPT trở thành:

\(\frac{a^2-2}{2}-3\ge a\Leftrightarrow a^2-2a-8\ge0\Rightarrow a\ge4\) (do \(a>0\))

\(\Leftrightarrow\sqrt{x+3}+\sqrt{x-1}\ge4\)

\(\Leftrightarrow2x+2+2\sqrt{x^2+2x-3}\ge16\)

\(\Leftrightarrow\sqrt{x^2+2x-3}\ge7-x\)

- Nếu \(x>7\Rightarrow\left\{{}\begin{matrix}VT\ge0\\VP< 0\end{matrix}\right.\) BPT hiển nhiên đúng

- Nếu \(1\le x\le7\)

\(\Leftrightarrow x^2+2x-3\ge x^2-14x+49\)

\(\Leftrightarrow x\ge\frac{13}{4}\) \(\Rightarrow\frac{13}{4}\le x\le7\)

Vậy nghiệm của BPT là \(x\ge\frac{13}{4}\)

Khách vãng lai đã xóa
OoO hoang OoO
Xem chi tiết
Ninh Đức Huy
3 tháng 6 2019 lúc 19:55

P=1/(x+y)(x^2-xy+y^2)+1/xy

P=1/(x^2-xy+y^2)+1/xy ( vĩ+y=1)

P=1/(x^2-xy+y^2)+3/xy

Đến đây áp dụng bất đẳng thức Svac có

P>=(√3+1)^2/(x+y)^2

P>=(√3+1)^2 (vì x+y=1)

hay P>=4+2√3(đpcm)

Kinder
Xem chi tiết