Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị Giang Thanh
Xem chi tiết
Tứ Diệp Thảo
23 tháng 4 2018 lúc 19:59

\(x.P\left(x+2\right)-\left(x-3\right).P\left(x-1\right)=0\)

\(P\left(x+2\right)\)\(P.\left(x+2\right)\) còn \(P\left(x-1\right)\)\(P.\left(x-1\right)\) à?

Từ Bảo
Xem chi tiết
Nguyễn Ngọc Lộc
27 tháng 6 2021 lúc 21:24

a, Ta thấy : \(\left\{{}\begin{matrix}\left(2a+1\right)^2\ge0\\\left(b+3\right)^2\ge0\\\left(5c-6\right)^2\ge0\end{matrix}\right.\)\(\forall a,b,c\in R\)

\(\Rightarrow\left(2a+1\right)^2+\left(b+3\right)^2+\left(5c-6\right)^2\ge0\forall a,b,c\in R\)

\(\left(2a+1\right)^2+\left(b+3\right)^2+\left(5c-6\right)^2\le0\)

Nên trường hợp chỉ xảy ra là : \(\left(2a+1\right)^2+\left(b+3\right)^2+\left(5c-6\right)^2=0\)

- Dấu " = " xảy ra \(\left\{{}\begin{matrix}2a+1=0\\b+3=0\\5c-6=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{1}{2}\\b=-3\\c=\dfrac{6}{5}\end{matrix}\right.\)

Vậy ...

b,c,d tương tự câu a nha chỉ cần thay số vào là ra ;-;

Trần Quang Nghĩa
Xem chi tiết
nhung
20 tháng 8 2016 lúc 20:51

Áp dụng BĐT Bunhiacopxki:

\(\sqrt{\left(a+b\right)\left(a+c\right)}\ge\sqrt{ac}+\sqrt{ab}\)

\(\Rightarrow\)\(\frac{a}{a+\sqrt{\left(a+b\right)\left(a+c\right)}}\)\(\le\frac{a}{a+\sqrt{ab}+\sqrt{ac}}\)=\(\frac{\sqrt{a}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}\)(1)

Tương tự ta có: \(\frac{b}{b+\sqrt{\left(b+c\right)\left(b+a\right)}}\le\frac{\sqrt{b}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}\)(2)

\(\frac{c}{c+\sqrt{\left(c+a\right)\left(c+b\right)}}\le\frac{\sqrt{c}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}\)(3)

Cộng theo vế của (1);(2)&(3) ta đc:

A\(\le1\)

Dấu''='' xảy ra\(\Leftrightarrow\)a=b=c

 

Hồ Hữu Duyy
Xem chi tiết
Nguyễn Thái Thịnh
6 tháng 2 2022 lúc 21:37

Áp dụng công thức: \(A\left(x\right).B\left(x\right)=0\Leftrightarrow\left[{}\begin{matrix}A\left(x\right)=0\\B\left(x\right)=0\end{matrix}\right.\)

a) \(PT\Leftrightarrow\left[{}\begin{matrix}3x-2=0\\4x+5=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-\dfrac{5}{4}\end{matrix}\right.\)

Vậy: \(S=\left\{\dfrac{2}{3};-\dfrac{5}{4}\right\}\)

b) \(PT\Leftrightarrow\left[{}\begin{matrix}2,3x-6,9=0\\0,1x+2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-20\end{matrix}\right.\)

Vậy: \(S=\left\{3;20\right\}\)

c) Vì \(x^2+1\ge1>0\forall x\)

\(\Rightarrow4x+2=0\)

\(\Leftrightarrow x=-\dfrac{1}{2}\)

Vậy: \(S=\left\{-\dfrac{1}{2}\right\}\)

d) \(PT\Leftrightarrow\left[{}\begin{matrix}2x+7=0\\x-5=0\\5x+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{7}{2}\\x=5\\x=-\dfrac{1}{5}\end{matrix}\right.\)

Vậy: \(S=\left\{-\dfrac{7}{2};5;-\dfrac{1}{5}\right\}\)

Nguyễn Lê Phước Thịnh
6 tháng 2 2022 lúc 21:34

a: =>3x-2=0 hoặc 4x+5=0

=>x=2/3 hoặc x=-5/4

b: =>(x-3)(x+20)=0

=>x=3 hoặc x=-20

c: =>4x+2=0

hay x=-1/2

d: =>2x+7=0 hoặc x-5=0 hoặc 5x+1=0

=>x=-7/2 hoặc x=5 hoặc x=-1/5

Trần Đức Huy
6 tháng 2 2022 lúc 21:35

TK

vinh vu
Xem chi tiết
Phạm Thế Mạnh
11 tháng 12 2015 lúc 20:22

\(\frac{2ab}{\left(c+a\right)\left(c+b\right)}+\frac{2bc}{\left(a+b\right)\left(a+c\right)}+\frac{2ca}{\left(b+a\right)\left(b+c\right)}\ge\frac{3}{2}\) thì phải

Quyết Tâm Chiến Thắng
Xem chi tiết
Bui Huyen
20 tháng 9 2019 lúc 20:28

\(\sqrt{\frac{\left(a+bc\right)\left(b+ac\right)}{c+ab}}=\sqrt{\frac{\left(a^2+ab+ac+bc\right)\left(b^2+bc+ba+ac\right)}{c^2+ca+cb+ab}}=\sqrt{\frac{\left(a+b\right)\left(a+c\right)\left(b+a\right)\left(b+c\right)}{\left(c+a\right)\left(c+b\right)}}=a+b\left(a,b,c>0;a+b+c=1\right)\)

Bạn làm tương tự nha

\(\Rightarrow P=a+b+c+a+b+c=2\left(a+b+c\right)=2\)

Hồ Khánh Châu
Xem chi tiết
Minh Hiếu
Xem chi tiết
Nguyễn Hoàng Minh
27 tháng 10 2021 lúc 21:20

Bài 1:

\(HPT\Leftrightarrow\left(a+b+c\right)^2=0\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\\ \Leftrightarrow a^2+b^2+c^2=0\\ \Leftrightarrow a=b=c=0\left(a^2+b^2+c^2\ge0\right)\\ \Leftrightarrow A=\left(-1\right)^{2019}+\left(-1\right)^{2020}+\left(-1\right)^{2021}=-1+1-1=-1\)

Bài 2: Giải toán trên mạng - Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học trực tuyến OLM

Bài 3: Xác định a, b, c để x^3 - ax^2 + bx - c = (x - a) (x-b)(x-c) - Lê Tường Vy

Phụng Nguyễn Thị
Xem chi tiết
Ngọc Hồng
8 tháng 12 2018 lúc 22:35

a) Áp dụng BĐT AM - GM:

\(\dfrac{a}{b}+\dfrac{b}{a}\) >= 2\(\sqrt{\dfrac{a}{b}.\dfrac{b}{a}}\) =2

Dấu '=' xảy ra <=> a=b=1

Ngọc Hồng
8 tháng 12 2018 lúc 22:35

b) Cũng áp dụng BĐT AM- GM nhưng cho 3 số

Ngọc Hồng
8 tháng 12 2018 lúc 22:40

c) Áp dụng BĐT AM- GM a+b>= 2\(\sqrt{ab}\)

\(\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\) >= 8\(\sqrt{ab.bc.ca}\) = 8abc

Dấu '=' xảy ra <=> a=b=c

Linh_Chi_chimte
Xem chi tiết
Thắng Nguyễn
30 tháng 12 2017 lúc 22:19

Áp dụng BĐT Cauchy-Schwarz ta có:

\(VT^2=\left(\sqrt{\left(a+c\right)\left(b+c\right)}+\sqrt{\left(a-c\right)\left(b-c\right)}\right)^2\)

\(\le\left(a+c+a-c\right)\left(b+c+b-c\right)\)

\(=2a\cdot2b=4ab=VP^2\)

\(\Rightarrow VT\le VP\) *ĐPCM*