Tìm n biết:
a) 32n+1=243
b) 32/(2n)=8
c) 5n + 5n+2 = 650
Tìm n∈N để
a) 32n+3 + 4n+11 ⋮ 25
b) 5n - 2n ⋮ 9
c)5n - 24 ⋮63
Giup t bn nữa đi ah.
Tìm n ∈ N, biết:
a) 3n = 243
b) 2n = 256
a) 3n = 35 => n = 5
b) 2n = 28 => n = 8
--thodagbun--
( h tớ lm b đt nè :( )
a) \(3^n=243\)
\(=>3^n=3^5\)
\(=>n=5\)
b) \(2^n=256\)
\(=>2^n=2^8\)
\(=>n=8\)
#Nothings -_-
Hài
a) 3n = 243
=> 3n = 35
=> n = 5
b) 2n = 256
=> 2n = 28
=> n = 8
tìm n ∈ Z để 2n2 + 5n - 1 ⋮ 2n - 1
chứng minh rằng với mọi số nguyên n thì
a) n2(n+1) + 2n(n+1) ⋮ 6
b) (2n-1)3 - (2n-1) ⋮ 8
c) (n+7)2 - (n-5)2 ⋮ 24
1:
2n^2+5n-1 chia hết cho 2n-1
=>2n^2-n+6n-3+2 chia hết cho 2n-1
=>2n-1 thuộc {1;-1;2;-2}
mà n nguyên
nên n=1 hoặc n=0
2:
a: A=n(n+1)(n+2)
Vì n;n+1;n+2 là 3 số liên tiếp
nên A=n(n+1)(n+2) chia hết cho 3!=6
b: B=(2n-1)[(2n-1)^2-1]
=(2n-1)(2n-2)*2n
=4n(n-1)(2n-1)
Vì n;n-1 là hai số nguyên liên tiếp
nên n(n-1) chia hết cho 2
=>B chia hết cho 8
c: C=n^2+14n+49-n^2+10n-25=24n+24=24(n+1) chia hết cho 24
Tìm số tự nhiên n biết:
a)7.3n=189 b)169.13n=2197
c)16<2n:2<64 d)5n+9=134.12018
e)255.3n=98 f)58-n=9n.33
\(a,\Rightarrow3^n=27=3^3\Rightarrow n=3\\ b,\Rightarrow13^n=13=13^1\Rightarrow n=1\\ c,\Rightarrow2^4< 2^{n-1}< 2^6\\ \Rightarrow n-1=5\Rightarrow n=6\\ d,\Rightarrow5^n=134-9=125=5^3\Rightarrow n=3\)
\(e,\Rightarrow2^n=4^{10}:8^4=2^{20}:2^{12}=2^8\\ \Rightarrow n=8\)
\(f,n\in\varnothing\)
1. tìm số nguyên n sao cho: 5n+2⋮2n-3
2. tìm số nguyên n sao cho: 4n+2⋮(2n-3)
Tìm n ϵ Z, biết:
a) 2n-1+5n-2=\(\frac{7}{32}\)
\(2n-1+5n-2=\frac{7}{32}\)
\(7n-3=\frac{7}{32}\)
\(7n=\frac{7}{32}+3\)
\(7n=\frac{103}{32}\)
\(n=\frac{103}{32}:7\)
\(n=\frac{103}{224}\)
Cho n ∈ N. Chứng minh rằng:
a) 5n+2 + 26.5n + 82n+1 ⋮ 59.
b) ( 42n - 32n - 7 ) ⋮ 168 ( n ≥ 1 ).
a) \(5^{n+2}+26.5^n+8^{2n+1}=25.5^n+26.6^n+8.8^{2n}\)
\(=5^n.51+8.64^n\)
Có \(64\equiv5\) (mod 59)
\(\Rightarrow64^n\equiv5^n\) (mod 59)
\(\Rightarrow8.64^n\equiv8.5^n\) (mod 59)
\(\Rightarrow5^n.51+8.64^n\equiv8.5^n+5^n.51\) (mod 59)
mà \(8.5^n+5^n.51=59.5^n\)\(\equiv0\) (mod 59)
\(\Rightarrow5^n.51+8.64^n\equiv8.5^n+5^n.51\equiv0\) (mod 59)
\(\Rightarrow5^{n+2}+26.5^n+8^{2n+1}⋮59\)
b) \(4^{2n}-3^{2n}-7=16^n-9^n-7\)
Có \(16^n-9^n-7=\left(16-9\right)\left(16^{n-1}+...+9^{n-1}\right)-7=7\left(16^{n-1}+...+9^{n-1}\right)-7⋮\)\(7\) (I)
Có \(16\equiv1\) (mod 3) \(\Rightarrow16^n\equiv1\) (mod 3) mà \(7\equiv1\) (mod 3)
\(\Rightarrow16^n-7\equiv0\) (mod 3) mà \(9^n\equiv0\) (mod 3)
\(\Rightarrow16^n-9^n-7⋮3\) (II)
Có \(9^n\equiv1\) (mod 8)\(\Rightarrow9^n+7\equiv8\) (mod 8)
\(\Rightarrow9^n+7⋮8\) mà \(16^n=2^n.8^n⋮8\)
\(\Rightarrow16^n-9^n-7⋮8\) (III)
Do \(\left(3;7;8\right)=1\)\(,3.7.8=168\)
Từ (I) (II) (III) \(\Rightarrow16^n-9^n-7⋮168\)
\(\Rightarrow\) Đpcm
a) 5n+2+26.5n+82n+1=25.5n+26.6n+8.82n5n+2+26.5n+82n+1=25.5n+26.6n+8.82n
=5n.51+8.64n=5n.51+8.64n
Có 64≡564≡5 (mod 59)
⇒64n≡5n⇒64n≡5n (mod 59)
⇒8.64n≡8.5n⇒8.64n≡8.5n (mod 59)
⇒5n.51+8.64n≡8.5n+5n.51⇒5n.51+8.64n≡8.5n+5n.51 (mod 59)
mà 8.5n+5n.51=59.5n8.5n+5n.51=59.5n≡0≡0 (mod 59)
⇒5n.51+8.64n≡8.5n+5n.51≡0⇒5n.51+8.64n≡8.5n+5n.51≡0 (mod 59)
cho e hỏi là 3 dấu gạch ngang là gì vậy ạ
tìm lim
a) \(\dfrac{1-2n^2}{5n+5}\)
b) \(\dfrac{1-2n}{5n+5n^2}\)
a,\(lim\dfrac{1-2n^2}{5n+5}=lim\dfrac{\left(1-n\sqrt{2}\right)\left(1+n\sqrt{2}\right)}{5n+5}=lim\dfrac{\left(\dfrac{1}{n}-\sqrt{2}\right)\left(\dfrac{1}{n}+\sqrt{2}\right)}{5+\dfrac{5}{n}}=\dfrac{-2}{5}\)
b,\(lim\dfrac{1-2n}{5n+5n^2}=lim\dfrac{\dfrac{1}{n^2}-\dfrac{2}{n}}{\dfrac{5}{n}+5}=\dfrac{0}{5}=0\)
tim các gioi han sau
a) \(\dfrac{n^2-2n}{5n+3n^2}\)
b) \(\dfrac{n^2-2}{5n+3n^2}\)
c) \(\dfrac{1-2n}{5n+3n^2}\)
d) \(\dfrac{1-2n^2}{5n+5}\)
a,\(lim\dfrac{n^2-2n}{5n+3n^2}=lim\dfrac{1-\dfrac{2}{n}}{\dfrac{5}{n}+3}=\dfrac{1}{3}\)
b,\(lim\dfrac{n^2-2}{5n+3n^2}=lim\dfrac{1-\dfrac{2}{n^2}}{\dfrac{5}{n}+3}=\dfrac{1}{3}\)
c,\(lim\dfrac{1-2n}{5n+3n^2}=lim\dfrac{1-2n}{n\left(5+3n\right)}=lim\dfrac{\dfrac{1}{n}-2}{1\left(\dfrac{5}{n}+3\right)}=-\dfrac{2}{3}\)
d,\(lim\dfrac{1-2n^2}{5n+5}=lim\dfrac{\left(1-n\sqrt{2}\right)\left(1+n\sqrt{2}\right)}{5n+5}=lim\dfrac{\left(\dfrac{1}{n}-\sqrt{2}\right)\left(\dfrac{1}{n}+\sqrt{2}\right)}{5+\dfrac{5}{n}}=\dfrac{-2}{5}\)
Tìm các số tự nhiên n sao cho
a. 2n - 32⋮n+3
b. 5n-49⋮n+5
a) \(\Rightarrow2\left(n+3\right)-38⋮\left(n+3\right)\)
Do \(n\in N\)
\(\Rightarrow\left(n+3\right)\inƯ\left(38\right)=\left\{19;38\right\}\)
\(\Rightarrow n\in\left\{16;35\right\}\)
b) \(\Rightarrow5\left(n+5\right)-74⋮\left(n+5\right)\)
Do \(n\in N\)
\(\Rightarrow\left(n+5\right)\inƯ\left(74\right)=\left\{37;74\right\}\)
\(\Rightarrow N\in\left\{32;69\right\}\)