Phân tích đa thức thành nhân tử:
x2 - x + y2 - y - x2y2 + xy
(x2 - 1)2 -4x2
Bài 2 Phân tích đa thức sau thành nhân tử
a. x4 + 2x3 − 4x − 4
b. x2(1 − x2) − 4 − 4x2
c. x2 + y2 − x2y2 + xy − x − y
d* a3 + b3 + c3 − 3abc
a) \(x^4+2x^3-4x-4=\left(x^4+2x^3+x^2\right)-\left(x^2+4x+4\right)\)
\(=\left(x^2+x\right)^2-\left(x+2\right)^2=\left(x^2+x-x-2\right)\left(x^2+x+x+2\right)\)
\(=\left(x^2-2\right)\left(x^2+2x+2\right)\)
a) Ta có: \(x^4+2x^3-4x-4\)
\(=\left(x^4+2x^3+x^2\right)-\left(x^2+4x+4\right)\)
\(=\left(x^2+x\right)^2-\left(x+2\right)^2\)
\(=\left(x^2+x-x-2\right)\left(x^2+x+x+2\right)\)
\(=\left(x^2-2\right)\cdot\left(x^2+2x+2\right)\)
d) Ta có: \(a^3+b^3+c^3-3abc\)
\(=\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\)
\(=\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)\)
Phân tích đa thức thành nhân tử:
x2 + y2 - x2y2 + xy - x - y
x2 + y2 - x2y2 + xy - x - y = (x2-x) + (y2-y) + (-x2y2 + xy) = x(x+1) + y(y+1) + xy(xy+1) = ( x+ y+ xy)( x + 1 + y + 1 + xy + 1)
\(x^2+y^2-x^2y^2+xy-x-y\)
\(=\left(x^2-x\right)+\left(y^2-y\right)+ \left(-x^2y^2+xy\right)\)
\(=x\left(x+1\right)+y\left(y+1\right)+xy\left(xy+1\right)\)
\(=\left(x+y+xy\right)\left(x+1+y+1+xy+1\right)\)
bài 1 : phân tích đa thức sau thành nhân tử
a)x2 + 4x +4
b)4x2 - 4x + 1
c) 2x- 1 -x2
d) x2+ x +\(\dfrac{1}{4}\)
e)9 - x2
g)(x+5)2 - 4x2
h)(x+1)2 -(2x - 1 )2
i)x2y2 - 4xy +1
k)y2-(x2 - 2x +1 )
l)x3 + 6x2+12x +8
m) 8x3 - 12x2y + 6xy2 - y3
a: \(x^2+4x+4=x^2+2\cdot x\cdot2+2^2=\left(x+2\right)^2\)
b: \(4x^2-4x+1=\left(2x\right)^2-2\cdot2x\cdot1+1^2=\left(2x-1\right)^2\)
c: \(2x-1-x^2\)
\(=-\left(x^2-2x+1\right)=-\left(x-1\right)^2\)
d: \(x^2+x+\dfrac{1}{4}=x^2+2\cdot x\cdot\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2=\left(x+\dfrac{1}{2}\right)^2\)
e: \(9-x^2=3^2-x^2=\left(3-x\right)\left(3+x\right)\)
g: \(\left(x+5\right)^2-4x^2=\left(x+5+2x\right)\left(x+5-2x\right)\)
\(=\left(5-x\right)\left(5+3x\right)\)
h: \(\left(x+1\right)^2-\left(2x-1\right)^2\)
\(=\left(x+1+2x-1\right)\left(x+1-2x+1\right)\)
\(=3x\left(-x+2\right)\)
i: \(=x^2y^2-4xy+4-3\)
\(=\left(xy-2\right)^2-3=\left(xy-2-\sqrt{3}\right)\left(xy-2+\sqrt{3}\right)\)
k: \(=y^2-\left(x-1\right)^2\)
\(=\left(y-x+1\right)\left(y+x-1\right)\)
l: \(=x^3+3\cdot x^2\cdot2+3\cdot x\cdot2^2+2^3=\left(x+2\right)^3\)
m: \(=\left(2x\right)^3-3\cdot\left(2x\right)^2\cdot y+3\cdot2x\cdot y^2-y^3=\left(2x-y\right)^3\)
Bài 1: Phân tích các đa thức sau thành nhân tử
a. 1 - 4x2
b. 8 - 27x3
c. 27 + 27x + 9x 2 + x3
d. 2x3 + 4x2 + 2x
e. x2 - 5x - y2 + 5y
f. x2 - 6x + 9 - y2
g. 10x (x - y) - 6y(y - x)
h. x2 - 4x - 5
i. x4 - y4
Bài 2: Tìm x, biết
a. 5(x - 2) = x - 2
b. 3(x - 5) = 5 - x
c. (x +2)2 - (x+ 2) (x - 2) = 0
Bài 3: Tìm giá trị nhỏ nhất của biểu thức
a. A = x2 - 6x + 11
b. B = 4x2 - 20x + 101
c. C = -x2 - 4xy + 5y2 + 10x - 22y + 28
a.
\(1-4x^2=\left(1-2x\right)\left(1+2x\right)\)
b.
\(8-27x^3=\left(2\right)^3-\left(3x\right)^3=\left(2-3x\right)\left(4+6x+9x^2\right)\)
c.
\(27+27x+9x^2+x^3=x^3+3.x^2.3+3.3^2.x+3^3\)
\(=\left(x+3\right)^3\)
d.
\(2x^3+4x^2+2x=2x\left(x^2+2x+1\right)=2x\left(x+1\right)^2\)
e.
\(x^2-y^2-5x+5y=\left(x-y\right)\left(x+y\right)-5\left(x-y\right)\)
\(=\left(x-y\right)\left(x+y-5\right)\)
f.
\(x^2-6x+9-y^2=\left(x-3\right)^2-y^2=\left(x-3-y\right)\left(x-3+y\right)\)
g. 10x(x-y)-6y(y-x)
=10x(x-y)+6y(x-y)
=(x-y)(10x+6y)
h.x2-4x-5
=(x-5)(x+1)
i.x4-y4 = (x2-y2)(x2+y2)
B2.
a.5(x-2)=x-2
⇔5(x-2)-(x-2)=0
⇔4(x-2)=0
⇔x=2
b.3(x-5)=5-x
⇔3(x-5)+(x-5)=0
⇔4(x-5)=0
⇔x=5
c.(x+2)2-(x+2)(x-2)=0
⇔(x+2)[(x+2)-(x-2)]=0
⇔4(x+2)=0
⇔x=-2
Phân tích đa thức thành nhân tử:
a) m x 2 + my - n x 2 - ny; b) mz - 2z - m 2 + 2m;
c) x 2 y 2 + y 3 + z x 2 + yz; d) 2x2 + 4mx + x + 2m.
e) x 4 - 9 x 3 + x 2 - 9x; g) 3 x 2 -2 ( x - y ) 2 - 3 y 2 .
h*) xy(x + y) + yz (y + z) + xz(x + z) + 2xyz.
Phân tích các đa thức sau thành nhân tử:
a) 3x - 3y + x 2 - y 2 ; b) x 2 -4 x 2 y 2 + y 2 + 2xy
c) x 6 - x 4 + 2 x 3 + 2 x 2 ; d) x 3 - 3x 2 +3x - 1 - y 3 .
a) (x - y)(x + y + 3). b) (x + y - 2xy)(2 + y + 2xy).
c) x 2 (x + l)( x 3 - x 2 + 2). d) (x – 1 - y)[ ( x - 1 ) 2 + ( x - 1 ) y + y 2 ].
phân tích đa thức sau thành nhân tử:
x2+y2-x2y2+xy-x-y
chịu rùi
bài này khó quá nguyen truong giang
chúc bn học tốt
nhae$
hihi
x2 + y2 - x2y2 + xy - x - y
=(x2-x2y2)+(y2-y)+(xy-x)
=x2(1-y)(1+y)-y(1-y)-x(1-y)
=(1-y)(x2+x2y-x-y)
=(1-y)[(x2-y)+(x2-x)]
=(1-y)[y(x-1)(x+1)+x(x-1)]
=(1-y)(x-1)(xy+x+y)
Bài 1. Phân tích đa thức 2x – 4y thành nhân tử được kết quả là:
A.2(x – 2y) B. 2( x + y) C. 4(2x – y) D. 2(x + 2y)
Bài 2. Phân tích đa thức 4x2 – 4xy thành nhân tử được kết quả là:
A.4(x2 – xy) B. x(4x – 4y) C. 4x(x – y) D. 4xy(x – y)
Bài 3. Tại x = 99 giá trị biểu thức x2 + x là:
A.990 B. 9900 C. 9100 D. 99000
Bài 4. Các giá trị của x thỏa mãn biểu thức x2 – 12x = 0 là:
A.x = 0 B. x = 12 C. x = 0 và x = 12 D. x = 11
Giúp mik với mik cảm ơn
Phân tích đa thức thành nhân tử: a)4x2 +4x+1. b)x2+6x-y2+9
a) $4x^2+4x+1$
$=(2x)^2+2\cdot2x\cdot1+1^2$
$=(2x+1)^2$
b) $x^2+6x-y^2+9$
$=(x^2+6x+9)-y^2$
$=(x^2+2\cdot x\cdot3+3^2)-y^2$
$=(x+3)^2-y^2$
$=(x+3-y)(x+3+y)$
$\text{#}Toru$
a: \(4x^2+4x+1\)
\(=\left(2x\right)^2+2\cdot2x\cdot1+1^2\)
\(=\left(2x+1\right)^2\)
b: \(x^2+6x-y^2+9\)
\(=\left(x^2+6x+9\right)-y^2\)
\(=\left(x+3\right)^2-y^2\)
\(=\left(x+3+y\right)\left(x+3-y\right)\)
phân tích đa thức (x2- x+ 1)2 - 5x( x2 -x +1)2 + 4x2 thành nhân tử
-Đặt \(t=\left(x^2-x+1\right)\)
\(\left(x^2-x+1\right)^2-5x\left(x^2-x+1\right)+4x^2\)
\(=t^2-5xt+4x^2\)
\(=t^2-4xt-xt+4x^2\)
\(=t\left(t-4x\right)-x\left(t-4x\right)\)
\(=\left(t-4x\right)\left(t-x\right)\)
\(=\left(x^2-x+1-4x\right)\left(x^2-x+1-x\right)\)
\(=\left(x^2-5x+1\right)\left(x^2-2x +1\right)\)
\(=\left(x^2-5x+1\right)\left(x-1\right)^2\)