cho hình bình hành ABCD. trên cạnh BC lấy điểm G trên cạnh AD lấy điểm H sao cho CG=AH. CMR GH, AC , BD đồng quy.
cho hình bình hành ABCD. trên cạnh BC lấy điểm G trên cạnh AD lấy điểm H sao cho CG=AH. CMR GH, AC , BD ĐỒNG QUI
goi O la trung diem AC va HG
cm tam giac HAO = tam giac COG ( c-g-c) --> HO=OG--> O la trung diem HG
xet hbh ABCD : AC va BD la hai duong cheo cat nhau tai trung diem moi duong , va O la trung diem AC
--> O la trung diem BD
ma O la trung diem HG
nen AC,GH,BD dong quy tai O
Cho hình bình hành ABCD. Trên cạnh DC lấy G, Trên cạnh AD lấy H sao cho CG=AH. Chứng minh: GH, AC, BD đồng quy
Cho hình bình hành ABCD. Trên cạnh BC lấy điểm G, trên cạnh AD lấy điểm H sao cho CG = AH. Cm: AC, BD, HG đồng quy.
Help me!!! Chiều nay mk hok rùi!!!
tuổi con HN là :
50 : ( 1 + 4 ) = 10 ( tuổi )
tuổi bố HN là :
50 - 10 = 40 ( tuổi )
hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi
ta có sơ đồ : bố : |----|----|----|
con : |----| hiệu 30 tuổi
tuổi con khi đó là :
30 : ( 3 - 1 ) = 15 ( tuổi )
số năm mà bố gấp 3 tuổi con là :
15 - 10 = 5 ( năm )
ĐS : 5 năm
mình nha
Cho hình bình hành ABCD.Trên BC lấy điểm G,Trên AD lấy điểm H sao cho CG = AH. CM : AC ; GH; BD đồng quy
Gọi O là trung điểm của AC và GH
Chứng minh tam giác HAO = tam giác COG --> HO = OG --> O là trung điểm của HG
Xét hình bình hành ABCD: AC và BD là hai đường chéo cắt nhau tại trung điểm mỗi đường và O là trung điểm của AC
--> O là trung điểm của BD
mà O là trung điểm của HG
Nên AC ; GH ; BD đồng quy
cho hình bình hành ABCD . Trên 2 cạnh AB và CD lần lượt lấy 2 điểm E và F sao cho AE = CF . Trên 2 cạnh AD và BC lần lượt lấy điểm H và G sao cho AH = CG .
a. Cmr EH = GF
b. Cmr tứ giác EHFG là hình bình hành
c. Gọi I là trung điểm của BD , Cmr 3 điểm E,I,F thẳng hàng
Cho hình bình hành ABCD. Trên cạnh AB lấy điểm E và trên cạnh CD lấy điểm F sao cho AE = CF. Trên cạnh AD lấy điểm M và trên cạnh BC lấy điểm N sao cho AM = CN.
a) Tứ giác MENF là hình gì? Vì sao?
b) Chứng minh các đường thẳng AC;BD;EF và MN đồng quy tại 1 điểm.
Gọi O là giao điểm 2 đường chéo AC và BD
Xét \(\Delta\)AOE và \(\Delta\)COF có:AO=OC ( vì ABCD là hình bình hành ),CF=AE ( giả thiết ),^AOE=^COF ( đối đỉnh )
a
Vì vậy \(\Delta AOE=\Delta COF\left(c.g.c\right)\Rightarrow OE=OF\left(1\right)\)
Xét \(\Delta\)BON và \(\Delta\)DOM có:OB=OD ( vì ABCD là hình bình hành ),MD=BN ( vì AM=CN ),^MOD=^NOB ( đối đỉnh )
Vì vậy \(\Delta BON=\Delta COM\left(c.g.c\right)\Rightarrow OM=ON\left(2\right)\)
Từ \(\left(1\right);\left(2\right)\) suy ra tứ giác EMFN là hình bình hành.
b
Hình bình hành EMFN có O là giao điểm của 2 đường chéo,tứ giác ABCD có O là giao điểm của 2 đường chéo.
=> ĐPCM
P/S:Mik ko chắc lắm đâu nha,nhất là câu b ý:p
Hình bình hành ABCD. Gọi E, F, G, H lần lượt là các điểm thuộc cạnh AB, CD, BC, AD sao cho AE=CF, BG=DH. CMR AC, BD, EF, GH đồng quy
Bài 31: Cho hình bình hành ABCD. Trên AB,BC,CD,DA lấy các điểm E,F,G,H sao cho AE=CG, BF=DH
Cm a, EFGH là hình bình hành b, AC,BD,EG,FH đồng quy
a: Xét ΔEBF và ΔGDH có
EB=GD
góc B=góc D
BF=DH
=>ΔEBF=ΔGDH
=>EF=gh
Xét ΔEAH và ΔGCF có
EA=GC
góc A=góc C
AH=CF
=>ΔEAH=ΔGCF
=>EH=GF
mà EF=GH
nên EHGF là hình bình hành
b: Xét tứ giác AECG có
AE//CG
AE=CG
=>AECG là hbh
=>AC cắt EG tại trung điểm của mỗi đường(1)
EFGH là hbh
=>EG cắt FH tại trung điểm của mỗi đường(2)
ABCD là hbh
=>AC cắt BD tại trung điểm của mỗi đường(3)
Từ (1), (2), (3) suy ra AC,BD,EG,FH đồng quy
Cho hình bình hành ABCD. Trên cạnh BC, lấy điểm G, trên cạnh AD, lấy điểm H sao cho CG=AH. chứng minh rằng các đường thẳng HG, AC, BD đồng quy
Hình thì bạn tự vẽ nha.
Gọi O là trung điểm của AC.
Trong hình bình hành ABCD ,có:
O là trung điểm của AC(1)
\(\Rightarrow\)O cũng là trung điểm của BD(2)(t/c hai đường chéo của HBH)
Do đó: O là tâm đối xứng của HBH
Lại có:
AH=CG(gt)
Và H nằm trên AD, G nằm trên BC
Mà O là tâm đối xứng của hình bình hành ABCD(cmt)
Do đó: AH đx với CG qua O
\(\Rightarrow\)OH=OG(3)
Từ (1), (2) và (3) \(\Rightarrow\) HG,AC và BD đồng quy tại O(đpcm)