Rút gọn các biểu thức sau:
a. \(\dfrac{1}{1+\sin a}+\dfrac{1}{1-\sin a}-2\tan^2a\)
Rút gọn các biểu thức sau
1, \(\dfrac{1+\cot x}{1-\cot x}-\dfrac{2+2\cot^2x}{\left(\tan x-1\right)\left(\tan^2x+1\right)}\)
2, \(\sqrt{\sin^4x+6\cos^2x+3\cos^4x}+\sqrt{\cos^4x+6\sin^2x+3\sin^4x}\)
Bạn kiểm tra lại đề bài câu 1, câu này chỉ có thể rút gọn đến \(2cot^2x+2cotx+1\) nên biểu thức ko hợp lý
Đồng thời kiểm tra luôn đề câu 2, trong cả 2 căn thức đều xuất hiện \(6sin^2x\) rất không hợp lý, chắc chắn phải có 1 cái là \(6cos^2x\)
Câu 1 đề vẫn có vấn đề:
\(=\dfrac{1+cotx}{1-cotx}-\dfrac{2\left(1+cot^2x\right)cot^2x}{\left(tanx-1\right)\left(tan^2x+1\right)cot^2x}=\dfrac{1+cotx}{1-cotx}-\dfrac{2cot^2x}{tanx-1}\)
\(=\dfrac{1+cotx}{1-cotx}-\dfrac{2cot^3x}{1-cotx}=\dfrac{1+cotx-2cot^3x}{1-cotx}\)
\(=\dfrac{\left(1-cotx\right)\left(1+2cotx+2cot^2x\right)}{1-cotx}=1+2cotx+2cot^2x\)
Có thể coi như ko thể rút gọn tiếp
2.
\(\sqrt{\left(1-cos^2x\right)^2+6cos^2x+3cos^4x}+\sqrt{\left(1-sin^2x\right)^2+6sin^2x+3sin^4x}\)
\(=\sqrt{4cos^4x+4cos^2x+1}+\sqrt{4sin^4x+4sin^2x+1}\)
\(=\sqrt{\left(2cos^2x+1\right)^2}+\sqrt{\left(2sin^2x+1\right)^2}\)
\(=2\left(cos^2x+sin^2x\right)+2=4\)
Rút gọn các biểu thức :
a) \(\sin\left(a+b\right)+\sin\left(\dfrac{\pi}{2}-a\right)\sin\left(-b\right)\)
b) \(\cos\left(\dfrac{\pi}{4}+a\right)\cos\left(\dfrac{\pi}{4}-a\right)+\dfrac{1}{2}\sin^2a\)
c) \(\cos\left(\dfrac{\pi}{2}-a\right)\sin\left(\dfrac{\pi}{2}-b\right)-\sin\left(a-b\right)\)
rút gọn biểu thức:
E=cos(\(\dfrac{3\pi}{3}-\alpha\))-sin(\(\dfrac{3\pi}{2}-\alpha\))+sin(\(\alpha+4\pi\))
Chứng minh các hệ thức sau :
a) \(\dfrac{1-2\sin^2a}{1+\sin2a}=\dfrac{1-\tan a}{1+\tan a}\)
b) \(\dfrac{\sin a+\sin3a+\sin5a}{\cos a+\cos3a+\cos5a}=\tan3a\)
c) \(\dfrac{\sin^4a-\cos^4a+\cos^2a}{2\left(1-\cos a\right)}=\cos^2\dfrac{a}{2}\)
d) \(\dfrac{\tan2x.\tan x}{\tan2x-\tan x}=\sin2x\)
Áp dụng CT nhân ba \(sin\left(3x\right)=3sinx-4sin^3x\) để rút gọn biểu thức sau:
\(S=\dfrac{1}{3}sin^3a+\dfrac{1}{9}sin^3\left(3a\right)+\dfrac{1}{27}sin^3\left(9a\right)+.....+\dfrac{1}{3^n}sin^3\left(3^{n-1}a\right)\)
Đơn giản các biểu thức sau(giả sử các biểu thức sau đều có nghĩa)
a) $A=\sin \left(90^{\circ}-x\right)+\cos \left(180^{\circ}-x\right)+\sin ^{2} x\left(1+\tan ^{2} x\right)-\tan ^{2} x$.
b) $B=\dfrac{1}{\sin x} \cdot \sqrt{\dfrac{1}{1+\cos x}+\dfrac{1}{1-\cos x}}-\sqrt{2}$.
1234567890-01234567890-=qưertyuiop[]\';;lkjhfgdsazxcvbnm,./\'l;[]7894561230.+-
Điền vào chỗ trống {......}để đơn giản các biểu thức sau:
a)\(\dfrac{ }{ }\) 1 + tan\(^2\) a =1 +\((\dfrac{...}{...})\)2 =\(\dfrac{....+....}{cos^2a}=\dfrac{........}{cos^2a}\)
b) 1 + cot2 a= + \((\dfrac{...}{...})^2\) = \(\dfrac{....+....}{sin^2a}=\dfrac{....}{sin^2a}\)
c) tan2 a (2 sin2a + 3 cos2 a - 2)
=tan2 a[cos2 a +2 (........ +.........)-2 ]
=\(\dfrac{sin^2a}{cos^2a}\)\(\times\)........=........
a) 1 + tan22 a =1 +(\(\dfrac{sina}{cosa}\))2 =\(\dfrac{sina+cosa}{cos^2a}\)=\(\dfrac{1}{cos^2a}\)
b) 1 + cot2 a= 1 +(\(\dfrac{cosa}{sina}\))2 = \(\dfrac{cosa+sina}{sin^2a}\)=\(\dfrac{1}{sin^2a}\)
c) tan2 a (2 sin2a + 3 cos2 a - 2)
=tan2 a[cos2 a +2 (\(sina^2+cos^2a\))-2 ]
=\(\dfrac{sin^2a}{cos^2a}\)×\(cos^2a=sin^2a\)
b: \(1+cot^2a=1+\left(\dfrac{cosa}{sina}\right)^2=\dfrac{1}{sin^2a}\)
c: \(=tan^2a\left[2\left(1-cos^2a\right)+3cos^2a-2\right]\)
\(=tan^2a\left[cos^2a\right]\)
\(=\dfrac{sin^2a}{cos^2a}\cdot cos^2a=sin^2a\)
Chứng minh rằng giá trị của các biểu thức sau không phụ thuộc vào giá trị
của góc nhọn a
\(\left(\sqrt{\dfrac{1+\sin\alpha}{1-\sin\alpha}}+\sqrt{\dfrac{1-\sin\alpha}{1+\sin\alpha}}\right)\dfrac{1}{\sqrt{1+\tan^2\alpha}}\)
\(\left(\sqrt{\dfrac{1+sin\alpha}{1-sin\alpha}}+\sqrt{\dfrac{1-sin\alpha}{1+sin\alpha}}\right).\dfrac{1}{\sqrt{1+tan^2\alpha}}\)
\(=\left(\sqrt{\dfrac{\left(1+sin\alpha\right)^2}{\left(1-sin\alpha\right)\left(1+sin\alpha\right)}}+\sqrt{\dfrac{\left(1-sin\alpha\right)^2}{\left(1+sin\alpha\right)\left(1-sin\alpha\right)}}\right).\dfrac{1}{\sqrt{1+\left(\dfrac{sin\alpha}{cos\alpha}\right)^2}}\)
\(=\left(\sqrt{\dfrac{\left(1+sin\alpha\right)^2}{1-sin^2\alpha}}+\sqrt{\dfrac{\left(1-sin\alpha\right)^2}{1-sin^2\alpha}}\right).\dfrac{1}{\sqrt{\dfrac{cos^2\alpha+sin^2\alpha}{cos^2\alpha}}}\)
\(=\left(\sqrt{\dfrac{\left(1+sin\alpha\right)^2}{cos^2\alpha}}+\sqrt{\dfrac{\left(1-sin\alpha\right)^2}{cos^2\alpha}}\right).\dfrac{1}{\sqrt{\dfrac{1}{cos^2\alpha}}}\)
\(=\left(\dfrac{1+sin\alpha}{cos\alpha}+\dfrac{1-sin\alpha}{cos\alpha}\right).\dfrac{1}{\dfrac{1}{cos\alpha}}=\dfrac{2}{cos\alpha}.cos\alpha=2\)
Chứng minh các đẳng thức sau(giả sử các biểu thức sau đều có nghĩa)
a) $\sin ^{4} x+\cos ^{4} x=1-2 \sin ^{2} x \cdot \cos ^{2} x$.
b) $\dfrac{1+\cot x}{1-\cot x}=\dfrac{\tan x+1}{\tan x-1}$.
c) $\dfrac{\cos x+\sin x}{\cos ^{3} x}=\tan ^{3} x+\tan ^{2} x+\tan x+1$.
\(a)sin^4x+cos^4x=1-2sin^2x\cdot cos^2x\)
\(\Leftrightarrow sin^4x+2sin^2x\cdot cos^2x+cos^4x=1\)
\(\Leftrightarrow\left(sin^2x+cos^2x\right)^2=1\)(luôn đúng)
a) VT=(sin2x + cos 2 x)2 - 2sin2 x . cos2 x = VP
b) VT= \(\dfrac{1+\dfrac{1}{tanx}}{1-\dfrac{1}{tanx}}\)=VP
c) VT= \(\dfrac{1}{cos^2x}+\dfrac{sinx}{cosx}.\dfrac{1}{cos^2x}=1+tan^2x+tanx.\left(1+tan^2x\right)=VP\)
a) Tính \(sin2a\) biết tan a\(=\dfrac{1}{15}\)
b) Cho \(3sina+4cosa=5\). Tính cos a và sin a
c) Tính \(sin^22a\) biết \(\dfrac{1}{tan^2a}+\dfrac{1}{cot^2a}+\dfrac{1}{sin^2a}+\dfrac{1}{cos^2a}=7\)
a.
\(tana=\dfrac{sina}{cosa}=\dfrac{1}{15}\Rightarrow sina=\dfrac{cosa}{15}\)
\(\Rightarrow sin2a=2sina.cosa=\dfrac{2cosa}{15}.cosa=\dfrac{2}{15}cos^2a=\dfrac{2}{15}.\dfrac{1}{1+tan^2a}=\dfrac{2}{15}.\dfrac{1}{1+\dfrac{1}{15^2}}=\dfrac{15}{113}\)
b.
\(5^2=\left(3sina+4cosa\right)^2\le\left(3^2+4^2\right)\left(sin^2+cos^2a\right)=25\)
Đẳng thức xảy ra khi và chỉ khi: \(\left\{{}\begin{matrix}\dfrac{sina}{3}=\dfrac{cosa}{4}\\3sina+4cosa=5\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}sina=\dfrac{3}{5}\\cosa=\dfrac{4}{5}\end{matrix}\right.\)
c.
\(\dfrac{1}{tan^2a}+\dfrac{1}{cot^2a}+\dfrac{1}{sin^2a}+\dfrac{1}{cos^2a}=7\)
\(\Leftrightarrow\dfrac{cos^2a}{sin^2a}+\dfrac{sin^2a}{cos^2a}+\dfrac{1}{sin^2a}+\dfrac{1}{cos^2a}=7\)
\(\)\(\Leftrightarrow\dfrac{sin^4a+cos^4a}{sin^2a.cos^2a}+\dfrac{sin^2a+cos^2a}{sin^2a.cos^2a}=7\)
\(\Leftrightarrow\dfrac{\left(sin^2a+cos^2a\right)^2-2sin^2a.cos^2a}{sin^2a.cos^2a}+\dfrac{1}{sin^2a.cos^2a}=7\)
\(\Leftrightarrow\dfrac{2}{sin^2a.cos^2a}=9\)
\(\Leftrightarrow\dfrac{8}{\left(2sina.cosa\right)^2}=9\)
\(\Leftrightarrow\dfrac{8}{sin^22a}=9\)
\(\Leftrightarrow sin^22a=\dfrac{8}{9}\)