\(\dfrac{x}{0,3}=\dfrac{y}{0,2}=\dfrac{z}{0,1}\) và x - y = 1
Tìm x,y,z:(áp dụng t/c của dãy tỉ số bằng nhau)
1/\(\dfrac{x}{0,3}\)=\(\dfrac{y}{0,2}\)=\(\dfrac{z}{0,1}\)và x-y=1
2/\(\dfrac{x}{2}\)=\(\dfrac{y}{3}\)=\(\dfrac{z}{-4}\)và 3x-2y=28
1: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{0,3}=\dfrac{y}{0.2}=\dfrac{z}{0.1}=\dfrac{x-y}{0.3-0.2}=\dfrac{1}{0.1}=10\)
Do đó: x=3; y=2; z=1
4) \(\dfrac{x}{0,5}=\dfrac{y}{0,3}=\dfrac{z}{0,2}\) và -y+x=1
6) \(\dfrac{x+11}{13}=\dfrac{y+12}{14}=\dfrac{z+13}{15}\)và x+y+z=6
7) 5x=4y và x.y=20
7) 5x=4y ⇒\(\dfrac{x}{4}=\dfrac{y}{5}\)
Nhân cả hai vế với \(\dfrac{x}{4}\), ta có: \(\left(\dfrac{x}{4}\right)^2=\dfrac{x}{4}.\dfrac{y}{5}=\dfrac{xy}{20}=\dfrac{20}{20}=1\)
\(\left(\dfrac{x}{4}\right)^2=1\Rightarrow\left[{}\begin{matrix}\dfrac{x}{4}=1\\\dfrac{x}{4}=-1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=4\\x=-4\end{matrix}\right.\)
⇒ \(\left[{}\begin{matrix}y=5\\y=-5\end{matrix}\right.\)
4) áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{0,5}=\dfrac{y}{0,3}=\dfrac{z}{0,2}=\dfrac{z-y+x}{0,2-0,3+0,5}=\dfrac{1}{\dfrac{2}{5}}=\dfrac{5}{2}\)
\(\dfrac{x}{0,5}=\dfrac{5}{2}\Rightarrow x=\dfrac{5}{4}\)
\(\dfrac{y}{0,3}=\dfrac{5}{2}\Rightarrow y=\dfrac{3}{4}\)
\(\dfrac{z}{0,2}=\dfrac{5}{2}\Rightarrow z=\dfrac{1}{2}\)
6) áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x+11}{13}=\dfrac{y+12}{14}=\dfrac{z+13}{15}=\dfrac{x+11+y+12+z+13}{13+14+15}=\dfrac{42}{42}=1\)
\(\dfrac{x+11}{13}=1\Rightarrow x=2\)
\(\dfrac{y+12}{13}=1\Rightarrow y=1\)
\(\dfrac{z+13}{15}=1\Rightarrow z=2\)
7) \(5x=4y\Rightarrow\dfrac{x}{4}=\dfrac{y}{5}=k\)
\(\Rightarrow x=4k,y=5k\)
\(x.y=20\\ \Rightarrow4k.5k=20\\ \Rightarrow20k^2=20\\ \Rightarrow k^2=1\\ \Rightarrow\left[{}\begin{matrix}k=-1\\k=1\end{matrix}\right.\)
\(x=4k\Rightarrow\left[{}\begin{matrix}x=-4\\x=4\end{matrix}\right.\)
\(y=5k\Rightarrow\left[{}\begin{matrix}y=-5\\y=5\end{matrix}\right.\)
Vậy \(\left(x,y\right)=\left\{\left(-4;-5\right);\left(4;5\right)\right\}\)
\(\dfrac{x}{0,3}\)=\(\dfrac{y}{0,2}\)=2z và z-3x=1
\(\dfrac{x}{0,3}=\dfrac{y}{0,2}=2z=\dfrac{3x}{0,9}=\dfrac{z}{\dfrac{1}{2}}=\dfrac{z-3x}{\dfrac{1}{2}-0,9}=\dfrac{1}{-\dfrac{2}{5}}=-\dfrac{5}{2}\)
\(\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{5.0,3}{2}=-\dfrac{3}{4}\\y=-\dfrac{5.0,2}{2}=-\dfrac{1}{2}\\z=-\dfrac{5}{2.2}=-\dfrac{5}{4}\end{matrix}\right.\)
Ta có: \(\dfrac{x}{0.3}=\dfrac{y}{0.2}=\dfrac{2z}{1}\)
nên \(\dfrac{3x}{0.9}=\dfrac{y}{0.2}=\dfrac{z}{0.5}\)
mà z-3x=1
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
Δ\(\dfrac{3x}{0.9}=\dfrac{y}{0.2}=\dfrac{z}{0.5}=\dfrac{z-3x}{0.5-0.9}=\dfrac{1}{0.4}=\dfrac{5}{2}\)
Do đó: \(\left\{{}\begin{matrix}x=\dfrac{5}{2}\cdot\dfrac{3}{10}=\dfrac{3}{4}\\y=\dfrac{5}{2}\cdot\dfrac{1}{5}=\dfrac{1}{2}\\z=\dfrac{5}{2}:2=\dfrac{5}{4}\end{matrix}\right.\)
\(\dfrac{x}{0,3}=\dfrac{y}{0,2}=2z\)và z-3x=1
Áp dụng tính chất của dãy tỉ số bằng nhau:
`x/(0,3)=y/(0,2)=(2z)/1=(z-3x)/(1/2 - 3.0,3) = 1/(-0,4)=-5/2`
`=>x=-5/2 . 0,3 =-3/4`
`y=-5/2 .0,2=-1/2`
`z= -5/2 : 2 =-5/4`
làm giúp mình nha mấy chế
1/ \(\dfrac{x}{5}=\dfrac{y}{6}=\dfrac{z}{4}\) và x - y = 36
2/ \(\dfrac{x}{7}=\dfrac{y}{3}=\dfrac{z}{4}\) và y + z =28
3/ \(\dfrac{x}{1,2}=\dfrac{y}{1,3}=\dfrac{z}{1,4}\) và 2x - y = 5,5
4/ \(\dfrac{x}{0,5}=\dfrac{y}{0,3}=\dfrac{z}{0,2}\) và x - y = 1
5/ \(\dfrac{x}{0,3}=\dfrac{y}{0,7}=z\) và z - 3x = 1
1/
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{5}=\dfrac{y}{6}=\dfrac{x-y}{5-6}=\dfrac{36}{-1}=-36\)
\(\Rightarrow\left\{{}\begin{matrix}x=-36\cdot5=-180\\y=-36\cdot6=-216\\z=-36\cdot4=-144\end{matrix}\right.\)
2/
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{y+z}{3+4}=\dfrac{28}{7}=4\)
\(\Rightarrow\left\{{}\begin{matrix}x=4\cdot7=28\\y=4\cdot3=12\\z=4\cdot4=16\end{matrix}\right.\)
3/
\(\dfrac{x}{1,2}=\dfrac{y}{1,3}\Leftrightarrow\dfrac{2x}{2,4}=\dfrac{y}{1,3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{2x}{2,4}=\dfrac{y}{1,3}=\dfrac{2x-y}{2,4-1,3}=\dfrac{5,5}{1,1}=5\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{5\cdot2,4}{2}=6\\y=5\cdot1,3=6,5\\z=5\cdot1,4=7\end{matrix}\right.\)
4/
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{0,5}=\dfrac{y}{0,3}=\dfrac{x-y}{0,5-0,3}=\dfrac{1}{0,2}=5\)
\(\Rightarrow\left\{{}\begin{matrix}x=5\cdot0,5=2,5\\y=5\cdot0,3=1,5\\z=5\cdot0,2=1\end{matrix}\right.\)
5/
\(z=\dfrac{x}{0,3}\Leftrightarrow z=\dfrac{3x}{0,9}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(z=\dfrac{3x}{0,9}=\dfrac{z-3x}{1-0,9}=\dfrac{1}{0,1}=10\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{10\cdot0,9}{3}=3\\y=10\cdot0,7=7\\z=10\end{matrix}\right.\)
a, Cho x, y, z > 0 \(\in[0,1]\). Chứng minh:
\(\dfrac{x}{yz+1}+\dfrac{y}{xz+1}+\dfrac{z}{xy+1}< 2\)
b, x, y, z > 0 : xyz = 1. Chứng minh:
\(\dfrac{1}{x^2+2y+3}+\dfrac{1}{y^2+2z^2+3}+\dfrac{1}{z^2+2x^2+3}\le2\)
Cho \(x,y,z\in[0,1]\). Chứng minh:
\(\dfrac{x}{yz+1}+\dfrac{y}{xz+1}+\dfrac{z}{xy+1}< 2\)
A ) 0,1 + 0,2 + 0,3 + 0,4 + ... + 1,9 ( tổng có tất cả 19 số hạng )
B ) ( 1999 x 1998 + 1998 + 1997 ) x ( 1 + \(\dfrac{1}{2}\) : 1\(\dfrac{1}{2}\) - 1\(\dfrac{1}{3}\) )
Cần gấp và trình bày đầy đủ cả 2 phần cho em !!!
A ) Đặt
\(A=0,1+0,2+...+1,9\\ \Rightarrow10A=1+2+3+..+19\\ =\left(1+19\right)\cdot\dfrac{19}{2}\\ =20\cdot\dfrac{19}{2}\\ =10\cdot19=190\\ \Rightarrow A=19\)
b) \(\left(1999\cdot1998+1998\cdot1997\right)\cdot\left(1+\dfrac{1}{2}:1\dfrac{1}{2}-1\dfrac{1}{3}\right)\)
\(=1998\cdot\left(1999+1997\right)\cdot\left(1+\dfrac{1}{2}:\dfrac{3}{2}-\dfrac{4}{3}\right)\)
\(=1998\cdot3996\cdot\left(1+\dfrac{1}{3}-\dfrac{4}{3}\right)\)
\(=1998\cdot3996\cdot0=0\)
B) Đặt
\(B=\left(1999x1998+1998+1997\right)x\left(1+\dfrac{1}{2}:1\dfrac{1}{2}-1\dfrac{1}{3}\right)\\ =\left(1999x1998+1998+1997\right)x\left(1+\dfrac{1}{2}:\dfrac{3}{2}-\dfrac{4}{3}\right)\\ =\left(1999x1998+1998+1997\right)x\left(1+\dfrac{1}{2}\cdot\dfrac{2}{3}-\dfrac{4}{3}\right)=\\ =\left(1999x1998+1998+1997\right)x\left(1+\dfrac{1}{3}-\dfrac{4}{3}\right)\\ =\left(1999x1998+1998+1997\right)x\left(\dfrac{4}{3}-\dfrac{4}{3}\right)\\ =\left(1999x1998+1998+1997\right)x0\\ =0\)
CMR: Nếu \(\dfrac{x}{y}+\dfrac{y}{z}+\dfrac{z}{x}\)=1 và\(\dfrac{y}{x}+\dfrac{z}{y}+\dfrac{x}{z}\)=0 thì\(\dfrac{x^2}{y^2}+\dfrac{y^2}{z^2}+\dfrac{z^2}{x^2}\)=1