1) Rút gọn bt:
(x+y+z)3+(x-y-z)3+(y-x-z)3+(z-y-x)3
2)Tìm x,y,z t/m: 9x2+y2+2z2-18x+4z-6y+20=0
3)Cho \(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}\)=1 và \(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}\)=0 . CMR:
\(\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}\)=1
Cho x+y+z=0 và x,y,z khác 0. Tính:
a) \(M=\dfrac{x^2}{x^2-y^2-z^2}+\dfrac{x^2}{y^2-x^2-z^2}+\dfrac{z^2}{z^2-y^2-x^2}\)
b) \(N=\dfrac{1}{x^2+y^2-z^2}+\dfrac{1}{y^2+z^2-x^2}+\dfrac{1}{z^2+x^2-y^2}\)
Cho \(\dfrac{x}{2020}+\dfrac{y}{2021}+\dfrac{z}{2022}=1\) và \(\dfrac{2020}{x}+\dfrac{2021}{y}+\dfrac{2022}{z}=0\) \(\left(x,y,z\ne0\right)\)
Chứng minh rằng \(\dfrac{x^2}{2020^2}+\dfrac{y^2}{2021^2}+\dfrac{z^2}{2022^2}=1\)
1)cho Q=\(\dfrac{a^4+a^3-a^2-2a-2}{a^4+2a^3-a^2-4a-2}\)
Tìm GTNN của Q
2)cho \(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}=1\) và \(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}=0\)
CMR: \(\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}=1\)
cho \(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}=0\) và \(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}=1\), tính A \(=\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}\)
Cho x,y,z > 0 và x^2 + y^2 + z^2 = 3. Tìm min của:
\(P=\dfrac{x^3}{x+y}+\dfrac{y^3}{y+z}+\dfrac{z^3}{z+x} \)
\(Q=\dfrac{x^3+y^3}{x+2y}+\dfrac{y^3+z^3}{y+2z}+\dfrac{z^3+x^3}{z+2x}\)
Bài 1: a;b;c > 0 và abc = 1
Chứng minh : \(\dfrac{a}{b^4+c^4+a}+\dfrac{b}{a^4+c^4+b}+\dfrac{c}{a^4+b^4+c}\le1\)
Bài 2: x;y;z > 0 và x + y + z = 2
Chứng minh : \(\dfrac{x^2}{y+z}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}\)
Tìm x,y,z biết:
a) 3x=2y, 7y=5z và x-y+z=32
b) \(\dfrac{x}{2}\)=\(\dfrac{y}{3}\) và x.y=24
c)\(\dfrac{x-1}{2}\)=\(\dfrac{y-2}{3}\)=\(\dfrac{z-3}{4}\) và 2x+3y-z=50
d)\(\dfrac{x}{2}\)=\(\dfrac{y}{3}\)=\(\dfrac{z}{5}\) và x.y.z=810
Cho \(\dfrac{x^2}{y+z}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}=0\) và \(x+y+z\ne0\). Tính \(\dfrac{x}{y+z}+\dfrac{y}{x+z}+\dfrac{z}{z+y}\)